We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Events

27 Jan 2025 - 30 Jan 2025
15 Feb 2025 - 17 Feb 2025

Surgical Meshes Impregnated with Manuka Honey Fight Infections

By HospiMedica International staff writers
Posted on 17 Dec 2019
Print article
Image: Dr. Piergorgio Gentile and Manuka honey (Photo courtesy of Newcastle University)
Image: Dr. Piergorgio Gentile and Manuka honey (Photo courtesy of Newcastle University)
Sandwiching tiny amounts of Manuka honey between surgical mesh layers can provide protection against bacterial infection for up to three weeks, according to a new study.

Developed by researchers at Ulster University (Newtownabbey, United Kingdom), the University of Leeds (United Kingdom), Newcastle University (United Kingdom), and other institutions, the surgical mesh was created via layer-by-layer (LBL) nanotechnology assembly by sandwiching eight layers each of negatively charged Manuka honey nanolayers and a positively charged biomimetic electrospun poly(ε-caprolactone) polymer. Each layer was just 10-20 nm in thickness.

Different cell lines, including human immortalized and primary skin fibroblasts, and primary endothelial cells, were exposed to the mesh to confirm membrane cytocompatibility. The Manuka honey meshes were then exposed to various Gram-negative and Gram-positive bacteria responsible for infections in the body, such as Staphylococcus, methicillin-resistant Staphylococcus aureus (MRSA), and E. coli. The results showed that antimicrobial MH activity was dependent on the concentration used, and the strains tested. The study was published on December 4, 2109, in Frontiers in Bioengineering and Biotechnology.

“Honey has been used to treat infected wounds for thousands of years, but this is the first time it has been shown to be effective at fighting infection in cells from inside the body,” said senior author Piergorgio Gentile, PhD, of Newcastle University. “Similarly layered antibiotic-releasing coatings to protect implants against bacterial infection have been judged as failing to provide durable protection, as it could encourage the development of drug resistant bacterial strains.”

Manuka (Leptospermum) honey is made from the tree species Leptospermum, found in New Zealand and Australia. The antibacterial effect of Manuka honey is due to the presence of methylglyoxal (MGO), which forms from the compound dihydroxyacetone (DHA) present in nectar, and converted into MGO during the ripening of honey. The level of MGO in Manuka honey is 100 or more times higher than in other types of honey.

Related Links:
Ulster University
University of Leeds
Newcastle University


Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
12-Channel ECG
CM1200B
New
Fetal and Maternal Monitor
F9 Series
New
Monitor Cart
Tryten S5

Print article

Channels

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.