We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App




Acoustic Energy Fragments Painful Kidney Stones

By HospiMedica International staff writers
Posted on 23 Oct 2019
Print article
A new study describes a next-generation lithotripsy device that uses cyclic pulses of ultrasound to fracture kidney stones at lower pressures than traditional shockwave technologies.

Developed at UC San Diego Health (UCSDH; CA, USA), Break Wave is a novel investigational device designed to apply burst wave lithotripsy (BWL) on the skin, either over the kidney or over the ureter. Once positioned, the stone is located via real-time ultrasound image guidance and a low amplitude burst of sound waves is emitted to fragment the stones, typically composed of hardened calcium oxalate, calcium phosphate, uric acid, or magnesium-ammonium-phosphate. The procedure requires little to no anesthesia.

Pre-clinical studies with a range of probes, interfaces, and outputs demonstrated the feasibility and consistent safety of BWL, which was used painlessly and without adverse events to reposition stones in 14 of 15 human study participants without restrictions on patient size, stone size, or stone location. An international, multi-center non-randomized clinical trial of the Break Wave device will recruit up to 30 patients with stones of a diameter up to 20 millimeters, with the primary goal of evaluating the device and to determine if the procedure can be done with minimal or zero anesthesia and in a non-surgical environment.

“Think of an opera singer hitting the right vocal pitch to produce vibrations that stress and break a wine glass. This is a similar concept,” said urologist Roger Sur, MD, director of the Comprehensive Kidney Stone Center at UCSDH. “The idea behind this investigational technology is to repeatedly stress certain points in the stone that cause it to fracture into small fragments, while avoiding damage to surrounding tissue.”

“If this study shows that this technology is both safe and effective in fragmenting kidney stones and does so with little to no anesthesia, it could be a game changer for patients,” concluded Dr. Sur, who performed the world’s first clinical trial procedure. “While watchful waiting is a good approach for the majority of kidney stones, we are in need of more non-invasive technologies that can treat stones without harming other structures.”

Kidney stones are often no larger than a grain of rice, yet some can grow to a diameter of several centimeters, causing blockage of the ureters. If it cannot be dissolved chemically, the kidney stone is treated using extracorporeal shock-wave therapy or minimally invasive endoscopic modalities. Many of these patients suffer from disease recurrence and need retreatment, but new stone formation might be reduced by adapting dietary habits or the use of particular medication strategies, as based on stone composition.

Related Links:
UC San Diego Health

Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Stereotactic Ultralight System
SUSy

Print article

Channels

Critical Care

view channel
Image: The permeable wearable electronics developed for long-term biosignal monitoring (Photo courtesy of CityUHK)

Super Permeable Wearable Electronics Enable Long-Term Biosignal Monitoring

Wearable electronics have become integral to enhancing health and fitness by offering continuous tracking of physiological signals over extended periods. This monitoring is crucial for understanding an... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The PATHFAST hs-cTnI-II high-sensitivity troponin assay has been developed for the PATHFAST Biomarker Analyzer (Photo courtesy of Polymedco)

POC Myocardial Infarction Test Delivers Results in 17 Minutes

Chest pain is the second leading cause of emergency department (ED) visits by adults in the United States, generating over 7 million visits annually. In the event of a suspected heart attack, physicians... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.