We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Events

27 Jan 2025 - 30 Jan 2025
15 Feb 2025 - 17 Feb 2025

Innovative Mesh Implant Simplifies Soft Tissue Repair

By HospiMedica International staff writers
Posted on 16 Oct 2019
Print article
Image: A close-up of warp knitted mesh treated with ANAB technology (Photo courtesy of Exogensis).
Image: A close-up of warp knitted mesh treated with ANAB technology (Photo courtesy of Exogensis).
A proprietary hernia repair device employs surface nano-modification technology for the repair of abdominal wall hernia defects, including direct and indirect inguinal defects.

The Exogenesis (Billerica, MA, USA) Hernia Mesh is constructed of monofilament polypropylene (PP) fibers warp knitted together, and a unique nanometer-level surface texture achieved via accelerated neutral atom beam (ANAB) technology designed to enable favorable post-implant tissue compatibility. The PP knitting process creates large pores and minimum density and thickness, resulting in an implant, which allows tissue ingrowth and long-term tissue support, simultaneously minimizing the inflammatory response and fibrous encapsulation related to implant mass.

The mesh is also treated using the ANAB process to modify the surface of the filaments on a nanometer scale. The low-energy nano-scale surface modification is created by acceleration of neutral argon (Ar) atoms with very low energies under vacuum, which bombard the PP surface, modifying it to a shallow depth of 2-3 nm, causing modifications of surface topography, structure, and energy. Exogenesis Hernia Mesh is indicated for the repair of abdominal wall hernias and abdominal wall deficiencies, but is not indicated for transvaginal pelvic organ prolapse repair.

“ANAB surface treatment technology is already being deployed on other devices, however Exogenesis Hernia Mesh is our first proprietary product developed entirely in-house,” said Dmitry Shashkov, PhD, President and CEO of Exogenesis. “ANAB has the bioactive potential to improve medical device implant responses in man, and we are excited to bring this exciting technology one step closer to the clinical community.”

Surgical meshes have been in use since the late 19th century. In recent years, research in the area has increased due to increasing numbers of post-surgery complications such as infection, fibrosis, adhesions, mesh rejection, and hernia recurrence. A wide range of materials and coatings, meshes with different fiber thickness and porosity, a variety of manufacturing methods, as well as surgical and implantation procedures have been tested. Recently, surface modification methods and nanofiber-based systems are actively being explored as a pathway to increase biocompatibility.

Related Links:
Exogenesis

Gold Member
12-Channel ECG
CM1200B
Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
New
Computed Tomography System
Aquilion ONE / INSIGHT Edition
New
Mattress Replacement System
Carilex DualPlus

Print article

Channels

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.