We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Stryker Worldwide

evelops medical products and technologies, including Implants (joint replacement), Trauma, Craniomaxillofacial, Spina... read more Featured Products: More products

Download Mobile App




3D-Printed Spinal Implant Promotes Biological Fixation

By HospiMedica International staff writers
Posted on 30 Oct 2017
Print article
Image: The Tritanium C anterior cervical cage implant (Photo courtesy of Stryker).
Image: The Tritanium C anterior cervical cage implant (Photo courtesy of Stryker).
A new anterior cervical cage fabricated via additive manufacturing provides a favorable environment for cell attachment and proliferation.

The Stryker Corporation (Kalamazoo, MI, USA) Tritanium C Anterior Cervical Cage is indicated for use in cervical interbody fusion procedures in skeletally mature patients with degenerative disc disease. The C Anterior Cervical Cage is manufactured using Tritanium, a highly porous titanium material that consists of a random interconnected architecture with rugged, irregular pore sizes and shapes that are designed to mimic cancellous bone. Tritanium encourages bone in-growth and biological fixation, and can also wick and retain fluid.

The C Anterior Cervical Cage implant is fabricated via Stryker AMagine, an approach to implant creation that is based on additive three-dimensional (3D) printing. Features include an open central graft window and lateral windows to help reduce stiffness of the cage and minimize subsidence; in addition, the large graft window allows for bone graft containment. Serrations on the superior and inferior surfaces allow bidirectional fixation and maximize surface area for endplate contact with the cage, while smooth posterior edges facilitate insertion and protect soft tissue and anatomy.

“Stryker’s Tritanium Technology is engineered for bone,” said Bradley Paddock, president of the Stryker Spine division. “Our growing line of Tritanium implants reflects our commitment to being at the forefront of technology advances in spinal surgery, and to providing our surgeon customers with a range of options to address their preferences and meet the needs of their patients.”

An interbody cage device is a prosthesis used in spinal fusion procedures to maintain foraminal height and decompression. Once in place, the cage resists flexion and extension of the spine, as well as axial forces across the ventral and middle columns. The Tritanium C Anterior Cervical Cage is offered in a number of footprints, heights, and lordotic angles to adapt to a variety of patient anatomies.

Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
Cannulating Sphincterotome
TRUEtome
New
Pneumatic Stool
Avante 5-Leg Pneumatic Stool

Print article

Channels

Critical Care

view channel
Image: This handheld scanner is moved over breast tissue to monitor how well breast cancer tumors respond to chemotherapy or radiation treatment (Photo courtesy of Boston University)

Novel Medical Device Inventions Use Light to Monitor Blood Pressure and Track Cancer Treatment Progress

Traditional blood pressure devices often leave room for human error. To address this, scientists at Boston University (Boston, MA, USA) have developed a new blood pressure monitoring device based on speckle... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.