We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Microbeam Technique Improves Radiation Therapy

By HospiMedica staff writers
Posted on 28 Jun 2006
Print article
Researchers report that enhancements they have made to a research form of radiation therapy that has been under evaluation for a long time could make the technique more successful and ultimately allow its use in hospitals.

Findings on the improved technique, which was assessed in rats, was published online June 10, 2006, in the Proceedings of the [U.S.] National Academy of Sciences. The researchers conducting the study were from the U.S. Department of Energy's Brookhaven U.S. National Laboratory and colleagues at Stony Brook University (Brookhaven, NY, USA), the IRCCS Neuromed Medical Center (Pozzilli, Italy), and Georgetown University (Washington DC, USA).

The technique, microbeam radiation therapy (MRT), previously utilized a high-intensity synchrotron x-ray source such as a superconducting wiggler at Brookhaven's National Synchrotron Light Source (NSLS) to produce parallel arrays of very thin (25-90 micrometers) planar x-ray beams instead of the unsegmented (solid), broad beams used in traditional radiation treatment.

Earlier studies performed at Brookhaven and at the European Synchrotron Radiation Facility (ESRF; Grenoble, France) demonstrated MRT's ability to control malignant tumors in animals with high radiation doses while subjecting adjacent healthy tissue to little collateral damage.

In the study, the scientists report findings that demonstrate the potential efficacy of considerably thicker microbeams, as well as a way to "interlace” the beams within a well-defined target inside the subject to increase their killing potential there, while keeping the technique's characteristic feature of sparing healthy tissue outside that target.

First, they exposed the spinal cords and brains of healthy rats to thicker (0.27-0.68 mm) microbeams at high doses of radiation and monitored the animals for signs of tissue damage. After seven months, animals exposed to beams as thick as 0.68 mm showed no or little damage to the nervous system.

Next, the scientists demonstrated the ability to "interlace” two parallel arrays of the thicker microbeams at a 90o angle to form a solid beam at a small target volume in the rats' brains, and assessed the effects of varying doses of radiation on the targeted tissue volume and the surrounding tissue using magnetic resonance imaging (MRI) scans. The MRI scans demonstrated that at a particular dose of radiation, the new configuration could produce major damage to the target volume but virtually no damage beyond the target range.



Related Links:
Brookhaven National Laboratory
Gold Member
12-Channel ECG
CM1200B
Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
New
Phlebotomy Cart
TR-65J38
New
Portable HF X-Ray Machine
PORTX

Print article

Channels

Surgical Techniques

view channel
Image: The innovative endoscope precisely identifies and removes tumors with laser light (Photo courtesy of Science Advances 10, eado9721 (2024). DOI: 10.1126/sciadv.ado9721)

Innovative Endoscope Precisely Identifies and Selectively Removes Tumor Tissue in Real Time

One of the most significant challenges in cancer surgery is completely removing a tumor without harming surrounding healthy tissue. Current techniques, such as intraoperative tissue sampling, only provide... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.