We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Biodegradable Electronic Tent Technology Diagnoses Brain Disease Non-Invasively

By HospiMedica International staff writers
Posted on 13 Aug 2024
Print article
Image: Process of minimally invasive large-area brain surface electrode insertion using a biodegradable electronic tent (Photo courtesy of Seoul National University)
Image: Process of minimally invasive large-area brain surface electrode insertion using a biodegradable electronic tent (Photo courtesy of Seoul National University)

High-density, large-area electronic interfaces are essential for brain-computer interface (BCI) technologies. Current diagnostic methods for conditions like epilepsy and Parkinson's disease often involve the use of large brain electrodes, necessitating the removal of a significant portion of the skull. This procedure comes with risks including brain hemorrhage, infection, cerebrospinal fluid leakage, and postoperative intracranial hypertension. There is a pressing need for less invasive alternatives to encourage the broader acceptance of bio and brain engineering technologies. To address this issue, researchers have developed a 'biodegradable electronic tent,' offering a new non-invasive approach to brain disease diagnosis.

The technology proposed in the internationally renowned journal Nature Electronics by scientists at the College of Engineering at Seoul National University (Seoul, Korea) utilizes a needle to implement a biodegradable electronic tent for diagnosing brain disorders. The electronic tent is designed to deploy smoothly between the narrow space of the skull and the brain, spanning a few millimeters. It is made from biodegradable shape-memory polymers and ultrathin biodegradable inorganic electronic devices. Injected through a small opening in the skull, the electronic tent expands to cover a large area comparable to the size of a palm. After serving its diagnostic purpose, the tent naturally dissolves within the body, eliminating the complications associated with permanent medical devices left inside the body, which is a common issue with traditional methods used in diagnosing epilepsy and Parkinson's disease.

The research team demonstrated the functionality of this technology by successfully measuring brainwave signals for two weeks using the biodegradable electronic tent in animal models. They also monitored the biodegradation process of the tent in vivo over a prolonged period, confirming its potential for practical use. The biodegradable electronic tent holds promise for revolutionizing the diagnosis of intractable epilepsy and Parkinson's disease by providing a minimally invasive method for placing electronic devices with a needle. This reduces the risks associated with conventional invasive surgeries and does away with the need for further surgical interventions to remove devices post-diagnosis. The technology is poised to expand its applications beyond epilepsy and Parkinson's to include other brain disorders like stroke and hydrocephalus. Furthermore, by minimizing the invasiveness of electrode insertion used in BCI technologies such as Neuralink's brain implants, it could decrease public resistance to these procedures, enhancing the viability of advanced BCI technologies.

Related Links:
College of Engineering at Seoul National University

New
Gold Member
X-Ray QA Meter
T3 AD Pro
Flocked Fiber Swabs
Puritan® patented HydraFlock®
New
Portable X-ray Unit
AJEX130HN
New
Washer/Disinfector
WD 290

Print article

Channels

Surgical Techniques

view channel
Image: Turn-by-turn guidance from Caresyntax provides real-time intraoperative support for the clinical team (Photo courtesy of Caresyntax)

AI-Powered Precision Surgery Platform to Make Procedures Smarter and Safer

The lack of seamless integration in medical technologies often results in inefficiencies, including unnecessary delays in surgery, increased potential for errors, and higher costs as equipment quickly... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
The Atellica VTLi Patient-side Immunoassay Analyzer, a high-sensitivity troponin I test at the bedside, delivers accurate results in just 8 minutes (Photo courtesy of Siemens Healthineers)

New 8-Minute Blood Test to Diagnose or Rule Out Heart Attack Shortens ED Stay

Emergency department overcrowding is a significant global issue that leads to increased mortality and morbidity, with chest pain being one of the most common reasons for hospital admissions.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.