We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




New Biomaterial That Regrows Damaged Cartilage in Joints to Help Avoid Full Knee Replacement Surgeries

By HospiMedica International staff writers
Posted on 07 Aug 2024
Print article
Image: Microstructure of the new bioactive material. The fibers are in pink; hyaluronic acid is shown in purple (Photo courtesy of Stupp Group)
Image: Microstructure of the new bioactive material. The fibers are in pink; hyaluronic acid is shown in purple (Photo courtesy of Stupp Group)

Cartilage plays a vital role in joint function and health, but it does not naturally regenerate in adults, leading to significant health and mobility issues when damaged. Scientists have now introduced a bioactive material that has effectively regenerated high-quality cartilage in knee joints within a large animal model. This substance, though it appears rubbery and gooey, is a complex network of molecular components designed to mimic the natural environment of cartilage in the body.

This groundbreaking research conducted by scientists at Northwestern University (Evanston, IL, USA) involved applying this novel material to the knee joints of animals where cartilage was damaged. Within six months, significant cartilage repair was observed, with the development of new cartilage enriched with natural biopolymers like collagen II and proteoglycans, crucial for joint resilience and pain-free movement. The researchers believe that this material could eventually help avoid the need for knee replacement surgeries, treat conditions such as osteoarthritis, and mend sports injuries like ACL tears. This follows their previous research published in the Proceedings of the National Academy of Sciences, where they explored the use of “dancing molecules” to stimulate cartilage cell activity in humans.

In their latest study, the team introduced a hybrid biomaterial, which includes a bioactive peptide that attaches to transforming growth factor beta-1 (TGFb-1), vital for cartilage growth and upkeep, and a specially modified version of hyaluronic acid, a natural component of cartilage and joint lubricant. These elements combine to form nanoscale fibers that organize into bundles, mimicking cartilage's structure and creating a scaffold that attracts the body’s cells for tissue regeneration. To test the effectiveness of this new material in cartilage growth, the material was evaluated in sheep with cartilage defects in their stifle joints, which closely resemble human knees in terms of load-bearing and size. The study, simulating human cartilage conditions due to its notoriously tough regenerative properties, involved injecting the biomaterial into the cartilage defects. This injection transformed into a rubbery matrix, facilitating the growth of new cartilage as the scaffold gradually broke down, with results showing a higher quality of repair than in control groups. Going forward, the research team envisions this material could be applied directly to joints during surgical procedures such as open-joint or arthroscopic surgeries, offering a potential improvement over the current microfracture surgery standard, which stimulates cartilage growth by creating small fractures in the bone.

“Our new therapy can induce repair in a tissue that does not naturally regenerate. We think our treatment could help address a serious, unmet clinical need,” said Northwestern’s Samuel I. Stupp, who led the study.

Related Links:
Northwestern University

Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
New
BiPAP Machine
Breath Smart Series
New
Digital Radiography System
DigiEye 330

Print article

Channels

Surgical Techniques

view channel
Image: Design and fabrication of biodegradable electrode for brain stimulation (Photo courtesy of Biomaterials, DOI:10.1016/j.biomaterials.2024.122957)

Biodegradable Electrodes Repair Damaged Brain Tissue Without Need for Surgical Removal

Neurological disorders often lead to irreversible cell loss and are a major cause of disability worldwide, with limited treatment options available. A promising therapeutic approach is the stimulation... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.