We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Novel Microneedle Patch Immediately Stops Bleeding After Injury

By HospiMedica International staff writers
Posted on 24 Jan 2023
Print article
Image: Hemostatic microneedle technology can be applied like a typical adhesive bandage to quickly stop bleeding (Photo courtesy of Penn State)
Image: Hemostatic microneedle technology can be applied like a typical adhesive bandage to quickly stop bleeding (Photo courtesy of Penn State)

Secondary, uncontrolled bleeding from traumatic injury is a leading cause of death. That could now change with a novel microneedle patch that is capable of immediately stopping bleeding after injury.

The hemostatic microneedle technology developed by researchers at Penn State (University Park, PA, USA) can be applied like a typical adhesive bandage to quickly stop bleeding. The biocompatible and biodegradable microneedle arrays (MNAs) on the patch increase its surface contact with blood and accelerate the clotting process. The needles also increase the adhesive properties of the patch through mechanical interlocking to promote wound closure.

The MNA patch is similar to the hydrogel technology currently used to treat bleeding wounds in hospitals, although hydrogel applications need preparation and medical expertise. In contrast, the microneedle patch is pre-engineered for immediate application so that it can be used by anyone to stop bleeding, similar to an adhesive bandage that is available over-the-counter. Microneedles are already being used to deliver biologics, such as cells or drugs, through the skin or for cosmetic procedures to stimulate collagen production. They are tiny, making their application pain-free. The researchers now plan to bring the patch from the lab to the market by further testing the technology.

“Excessive bleeding is a serious challenge for human health. With hemorrhaging injuries, it is often the loss of blood - not the injury itself - that causes death. There is an unmet medical need for ready-to-use biomaterials that promote rapid blood coagulation,” said Amir Sheikhi, assistant professor of chemical engineering and of biomedical engineering at Penn State. “In vitro, the engineered MNAs reduced clotting time from 11.5 minutes to 1.3 minutes; and in a rat liver bleeding model, they reduced bleeding by more than 90%. Those 10 minutes could be the difference between life and death.”

Related Links:
Penn State 

Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
New
Hand Fixation Device
Hand Fixation Device
New
Adjustable Shower Trolley
ST 370

Print article

Channels

Surgical Techniques

view channel
Image: Design and fabrication of biodegradable electrode for brain stimulation (Photo courtesy of Biomaterials, DOI:10.1016/j.biomaterials.2024.122957)

Biodegradable Electrodes Repair Damaged Brain Tissue Without Need for Surgical Removal

Neurological disorders often lead to irreversible cell loss and are a major cause of disability worldwide, with limited treatment options available. A promising therapeutic approach is the stimulation... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.