We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




New AI Software Advances Organ Printing Technology

By HospiMedica International staff writers
Posted on 26 Apr 2018
Print article
Image: The Aether 1 software uses adaptable deep learning models and an array of AI and image-processing techniques (Photo courtesy of Aether).
Image: The Aether 1 software uses adaptable deep learning models and an array of AI and image-processing techniques (Photo courtesy of Aether).
A new artificial intelligence (AI)-powered medical imaging software that enables automatic segmentation of organs and tissues, including ultra-simple conversion to single or multi-material printable 3D files, has the potential to dramatically advance the development of 3D organ printing technology.

The medical software named Aether 1, developed by Aether Inc, (San Francisco, CA, USA), is based on its new Automatic Segmentation and Reconstruction (ASAR) process which uses adaptable deep learning models, dynamically combined with an array of AI and image processing techniques. ASAR enables users to segment organs and tissues, and reconstruct them as digital 3D models, which can be used for fabrication, analysis, and other applications. The process is completely automatic with no editing tools, calibration, or human intervention required. Aether has successfully segmented multiple organ types with a high level of accuracy across a wide range of CT scan datasets, and plans to extend this capability to virtually all organ and tissue types, across all major modalities, such as MRI, X-ray, and angiogram.

Aether's medical software will now use the power of ASAR for applications beyond bioprinting. The company is building a platform, which will allow users to interact with medical images in entirely new ways, more powerful, effective, and engaging than anything currently available. The low cost and ease of use of Aether's AI-powered 3D bioprinting platform will enable hospitals to have on-site organ fabrication systems to create exact replicas of patient anatomy with push-button simplicity. Surgeons will practice for significant procedures with accurate replicas of patient anatomy made from ultra-realistic synthetic human tissue, bone, fat, vasculature and blood. This may reduce surgical errors, provide peace of mind for the patient, and benefit the reputation of the institution. When 3D printed organs become a viable transplantation option, a similar process may be followed where synthetic materials are replaced by bio-inks seeded with the patient's own cells. Producing organs on demand will eliminate risk of rejection and transplant waiting lists. Aether's hardware, software, bio-inks, and upcoming products are building an eco-system to enable researchers to achieve this goal.

Aether will collaborate with Jang Laboratory for developing Advanced Biomaterials and Biotechnologies at Brigham and Women's Hospital, Harvard Medical School (Principal Investigator: Dr. Hae Lin Jang) to pursue the creation of a completely integrated organ printing system. Combining an advanced multi-tool bioprinter, AI, and bio-inks, into an integrated system may potentially deliver the life-saving benefits of organ printing at a significantly accelerated rate. The ongoing collaboration with Jang Laboratory at HMS will provide feedback that will help train Aether's AI models, as well as guidance which will help set the direction for Aether's future software projects.

Additionally, Aether will print multi-material synthetic organ models created from medical images, developing a seamless "Image to Print" process. Dr. Jang's laboratory may then utilize and modify this process to print organs with real human cells, a tremendous step towards personalized organ printing. Dr. Jang's research includes the printing of functional organs, which will consist of multiple tissue types with different physiochemical properties, using bio-inks able to grow a variety of tissue cell types. Dr. Jang will first print the musculoskeletal system, which incorporates bone, muscle, blood vessels, and nerves. Dr. Jang will then go on to 3D print other organ types. Aether will enhance this research with Aether 1's revolutionary multi-tool and AI automation capabilities, along with the development of custom modules, software, bio-inks, and future products.

"It's great that we can say Aether 1 is the only all-in-one 3D bioprinter with the multi-tool capabilities and automation required for organ printing, but the truth is a big piece was still missing from the puzzle," said Aether CEO Ryan Franks. "Once we learned AI is the only way bioprinting can reach its full potential, we set out to develop software that would bridge the gap between science-fiction and reality. Aether's medical imaging AI will be a quantum leap forward, so we can't wait to get this software out there and experience the impact it has on the medical field."

"I am excited to participate in the development of an integrated organ printing system, and am looking forward to seeing how a multi-tool bioprinter with AI can enhance our research," said Dr. Jang. "I believe this is a revolutionary platform, and hope my advisory role will help Aether empower the worldwide research community."

Related Links:
Aether

Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
12-Channel ECG
CM1200B
New
Mattress Replacement System
Carilex DualPlus
New
Blanket Warming Cabinet
EC250

Print article

Channels

Surgical Techniques

view channel
Image: The surgical team and the Edge Multi-Port Endoscopic Surgical Robot MP1000 surgical system (Photo courtesy of Wei Zhang)

Endoscopic Surgical System Enables Remote Robot-Assisted Laparoscopic Hysterectomy

Telemedicine enables patients in remote areas to access consultations and treatments, overcoming challenges related to the uneven distribution and availability of medical resources. However, the execution... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.