We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App





Lung MRI Shows Lasting Damage in Children and Teens After COVID

By HospiMedica International staff writers
Posted on 21 Sep 2022
Print article
Image: Lasting lung damage has been seen in children and teens after COVID (Photo courtesy of Unsplash)
Image: Lasting lung damage has been seen in children and teens after COVID (Photo courtesy of Unsplash)

COVID-19 is an infectious disease caused by the SARS-CoV-2 virus. Since emerging in late 2019, it has killed more than five million people worldwide. The lungs are the primary target for the virus. Study of the disease’s long-term effects has accelerated as the number of COVID survivors climbs and more people are diagnosed with long COVID. The World Health Organization defines long COVID as involving symptoms that persist for a minimum of 12 weeks and other factors, such as symptoms that result in a new health limitation or worsening of a pre-existing underlying medical condition. The nature of the post-acute phase of the infection is poorly understood in younger people. CT has shown persistent damage to the lungs in adults, but CT uses ionizing radiation and has limited diagnostic value in children, where lung changes due to COVID-19 are less pronounced. Now, a new study has revealed that children and adolescents who have either recovered from COVID-19 or have long COVID show persistent lung damage on MRI.

Researchers at the University Hospital Erlangen (Erlangen, Germany) studied COVID-19’s effects in children and adolescents using low-field MRI. The technology relies on a lower magnetic field than conventional MRI and allows for free breathing, meaning the subjects do not have to hold their breath during imaging. This makes scanning more feasible in children. The researchers looked at changes in lung structure and function in 54 children and adolescents (mean age 11 years) with previous SARS-CoV-2 infection. Of the 54 patients, 29 had recovered, and 25 had long COVID. All but one of the patients had been unvaccinated at the time of original infection.

None of the COVID-19 group required hospital admission during the primary infection period. Shortness of breath, impaired attention, headache, fatigue and loss of smell were the most commonly reported symptoms at the time of the study. Results from the COVID-19 group were compared with those from nine healthy controls. MRI allowed the researchers to derive the V/Q match, a measure of air and blood flow in the lungs. If lungs are working properly, the air and blood flow should match.

V/Q matches showed persistent pulmonary dysfunction in the patients who had recovered from COVID-19 and in those with long COVID. The V/Q match was 62% in the recovered group and 60% in the long COVID group - both considerably lower than the 81% match in healthy controls. Long-term implications of these lung changes remain unclear, but the results warrant further surveillance of persistent lung damage in children and adolescents after COVID-19, according to the researchers. Lung MRI is already widely available, he noted, making these imaging approaches easy to integrate into clinical routine care. More research will help show the full potential of MRI in COVID-19 survivors.

“Persistent symptoms after COVID still cause diagnostic odysseys, and this is especially true for young people,” said study senior author Ferdinand Knieling, M.D., specialist in pediatrics and adolescent medicine from the departments of Pediatrics and Adolescent Medicine at University Hospital Erlangen. “Our findings illustrate that caring for these patients is a multidisciplinary challenge.”

“A follow-up trial has already started, and we seek to understand how findings change over time,” Dr. Knieling added. “Additionally, we will take closer looks at other organs to see how this correlates with our findings.”

Related Links:
University Hospital Erlangen

Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
New
Treatment Cart
Avalo Woodblend
New
Portable HF X-Ray Machine
PORTX

Print article

Channels

Surgical Techniques

view channel
Image: OnPoint AR is an advanced Augmented Reality system designed to transform spine surgery (Photo courtesy of OnPoint Surgical)

Advanced Augmented Reality System to Transform Spine Surgery

Spinal surgeries require high spatial precision to ensure successful outcomes. Achieving accurate execution is crucial for the best postoperative results in spinal patients. Now, a breakthrough in augmented... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.