We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




AI Model Analyzes Patient Data to Diagnose Multiple Sclerosis With 90% Accuracy

By HospiMedica International staff writers
Posted on 01 May 2025

Multiple sclerosis (MS) is a chronic inflammatory condition affecting the central nervous system. More...

Most patients initially experience the relapsing-remitting form (RRMS), characterized by periods of symptom flare-ups followed by stability. Over time, many individuals transition to secondary progressive MS (SPMS), where symptoms gradually worsen without noticeable breaks. Identifying this transition is critical, as the two forms of MS require different treatment approaches. Currently, the diagnosis is typically made an average of three years after the transition begins, which can result in patients receiving treatments that are no longer effective. Now, a new artificial intelligence (AI) model can predict with 90 percent certainty which form of MS a patient has. This model enhances the likelihood of starting the correct treatment promptly, helping to slow disease progression.

The AI model, developed by researchers at Uppsala University (Uppsala, Sweden), synthesizes clinical data from over 22,000 patients in the Swedish MS Registry. The model is based on data routinely collected during regular healthcare visits, including neurological tests, magnetic resonance imaging (MRI) scans, and ongoing treatments. In a study published in Digital Medicine, the model was able to identify the transition to secondary progressive MS correctly or earlier than recorded in the patient's medical history in nearly 87 percent of cases, achieving an overall accuracy of around 90 percent. For patients, this means an earlier diagnosis, allowing for timely adjustments in treatment to slow the disease's progression. This also reduces the likelihood of patients receiving medications that are no longer effective. In the future, the model could be used to identify appropriate candidates for clinical trials, potentially leading to more effective and personalized treatment strategies.

“By recognizing patterns from previous patients, the model can determine whether a patient has the relapsing-remitting form or whether the disease has transitioned to secondary progressive MS,” said Kim Kultima, researcher at the Department of Medical Sciences, Uppsala University, who led the study. “What is unique about the model is that it also indicates how confident it is in each individual assessment. This means that the doctor will know how reliable the conclusion is and how confident the AI is in its assessment.”

Related Links:
Uppsala University


Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
New
Thoracolumbar & Sacropelvic System
Ennovate TLSP
New
Pediatric Cast Saw
CSP-201 Quietcast
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.