We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App





Biomarkers Found for COVID-19 Condition in Children May Help Predict Disease Severity and Develop MIS-C Therapies

By HospiMedica International staff writers
Posted on 01 Sep 2021
Print article
Illustration
Illustration
Researchers have found biomarkers that could help predict the severity of a rare but serious complication in children with COVID-19.

The findings of the study led by Cedars-Sinai (Los Angeles, CA, USA) may help predict disease severity and develop therapies for Multisystem Inflammatory Syndrome in Children (MIS-C). This rare but serious inflammatory condition that affects children who contract COVID-19 produces a distinctive pattern of biomarkers that may help physicians predict disease severity and also aid researchers in developing new treatments, according to findings of the study.

The Cedars-Sinai study focused on MIS-C, an inflammatory response involving multiple organs that can occur weeks after infection with SARS-CoV-2, the virus that causes COVID-19. The investigators examined a small group of patients to identify an array of pathogenic pathways culminating in MIS-C, along with proteins in the blood with potential to act as biomarkers to forecast the severity of the syndrome and help drive treatment decisions. A picture is emerging of MIS-C as an autoimmune disease in which the immune system becomes overactive and mistakenly attacks the body's own organs, according to the researchers. This process may be triggered by widespread tissue damage caused by the SARS-CoV-2 infection.

Children with MIS-C often present symptoms similar to those observed in the so-called cytokine storm, an inflammatory response that can be fatal in COVID-19 patients. These symptoms may include persistent fever and gastrointestinal, respiratory, neurological and cardiovascular problems, such as shock and heart muscle inflammation. Previous research had uncovered similar biological processes involved in MIS-C, the cytokine storm and toxic shock syndrome - a rare, life-threatening complication of bacterial infections. For the new study, the research team adopted an interdisciplinary approach in which they examined 69 children, including those with and without MIS-C and seven with another pediatric inflammatory disorder - Kawasaki disease. Future investigations are needed to validate the findings in a larger patient group, according to the researchers.

"We deployed an array of advanced techniques, including proteomics, RNA sequencing and analyses of antibodies and immune system signaling," said Jennifer Van Eyk, PhD, director of the Advanced Clinical Biosystems Research Institute in the Smidt Heart Institute at Cedars-Sinai, and an expert on proteomics - the study of proteins at the molecular and genetic levels. "By combining forces, we are better able to accelerate scientific discoveries to keep pace with the rapidly evolving pandemic and to inform clinical decisions."

Related Links:
Cedars-Sinai

Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
New
Blanket Warming Cabinet
EC250
New
Standing Sling
Sara Flex

Print article

Channels

Surgical Techniques

view channel
Image: The surgical team and the Edge Multi-Port Endoscopic Surgical Robot MP1000 surgical system (Photo courtesy of Wei Zhang)

Endoscopic Surgical System Enables Remote Robot-Assisted Laparoscopic Hysterectomy

Telemedicine enables patients in remote areas to access consultations and treatments, overcoming challenges related to the uneven distribution and availability of medical resources. However, the execution... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.