We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




Novel Cannula Delivery System Enables Targeted Delivery of Imaging Agents and Drugs

By HospiMedica International staff writers
Posted on 17 Apr 2025

Multiphoton microscopy has become an invaluable tool in neuroscience, allowing researchers to observe brain activity in real time with high-resolution imaging. More...

A crucial aspect of many multiphoton microscopy studies is the effective delivery of chemical compounds, including imaging agents and drugs, to the brain. However, many of these compounds face a significant obstacle—the blood-brain barrier—which prevents them from being delivered through systemic administration. To overcome this challenge, a research team has developed an innovative cannula delivery system that enables the precise administration of compounds during extended live (in vivo) imaging via multiphoton microscopy. The system features a low-profile micropipette, or "cannula," implanted at a shallow angle of just 8 degrees, almost parallel to the brain's surface. This setup ensures that imaging agents can be delivered directly to the brain without interfering with the optical path needed for high-resolution imaging.

A significant challenge in optical imaging studies is that many fluorescent sensors and reporters used to study biological processes are not genetically encoded. These imaging agents often require direct infusion into the brain, which typically limits the ability to conduct longitudinal imaging studies. Researchers at Massachusetts General Hospital (Boston, MA, USA) have now introduced a shallow-angle, chronically implanted cannula for the delivery of imaging agents to the brain during long-term in vivo imaging sessions. To validate the efficacy of their cannula delivery system, the research team conducted a series of experiments. They successfully administered fluorescent cell markers into the brain while simultaneously imaging them using multiphoton microscopy.

Additionally, in mouse models of Alzheimer's disease, the team used a special dye, Fluoro-Jade C, to track degenerating neurons, and they also performed long-term imaging of brain tissue oxygen levels using a phosphorescent oxygen sensor. This technique marks a significant advancement for mouse cranial imaging windows, enhancing both dye delivery and the quality of imaging data. While this method is not entirely noninvasive, it presents a promising development for conducting longitudinal studies on brain function, disease progression, and potential treatments. The method offers researchers more accurate and reliable tools for a wide range of brain imaging applications. To facilitate broader adoption of this technology, the team has provided comprehensive guidance on the construction and implantation of the cannula in their study published in Neurophotonics.


Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
New
Dual-Screen Medical Display
C822W
New
Medical Cart
Medical Carts
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: The engine-free, nonlinear, flexible, micro-robotic platform leverages AI to optimize GBM treatment (Photo courtesy of Symphony Robotics)

First-Ever MRI-Steerable Micro-Robotics to Revolutionize Glioblastoma Treatment

Glioblastoma Multiforme (GBM) is one of the most aggressive and difficult-to-treat brain cancers. Traditional surgical procedures, such as craniotomies, involve significant invasiveness, requiring large... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.