We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App





Unsupervised AI Predicts COVID-19 Progression and Patient Survival Directly from Chest CT Images

By HospiMedica International staff writers
Posted on 31 Aug 2021
Unsupervised artificial intelligence (AI) has broken new ground by predicting the progression of COVID-19 and survival of patients directly from their chest computed tomography (CT) images.

In a multi-center study, a research team at Massachusetts General Hospital (Boston, MA, USA) showed that unsupervised deep learning based on CT can provide a significantly higher prognostic performance than established laboratory tests and existing image-based visual and quantitative survival predictors. The model can predict, for each patient, the time when COVID-19 progresses and thus the time when the patient is admitted to an intensive care unit or when the patient is diseased, something that other image-based prediction models cannot do. The time information calculated by the model also enables stratification of the patients into low- and high-risk groups by a wider margin than what is possible with other predictors.

Fast and accurate clinical assessment of the disease progression and mortality is vital for the management of COVID-19 patients. Although several predictors have been proposed, they have been limited to subjective assessment, semi-automated schemes, or supervised deep learning approaches. Such predictors are subjective or require laborious annotation of training cases. In a companion study, the research team had already shown that supervised AI can be used to predict the survival of COVID-19 patients from their chest CT images. However, the new unsupervised AI model breaks new ground by avoiding the technical limitations and the laborious annotation efforts of the previous predictors, because the use of a generative adversarial network makes it possible to train a complete end-to-end survival analysis model directly from the images. Although the study was limited to COVID-19 patients, the team believes that the model can be generalized to other diseases as well.

“Our results show that the prediction performance of the unsupervised AI model was significantly higher and the prediction error significantly lower than those of the previously established reference predictors,” said Hiroyuki Yoshida, PhD, director of the 3D Imaging Research at Massachusetts General Hospital who led the research team. “The use of unsupervised AI as an integral part of the survival prediction model makes it possible to perform prognostic predictions directly from the original CT images of patients at a higher accuracy than what was previously possible in quantitative imaging.”

“It is a much more precise and highly advanced AI technology,” Yoshida explained. “Issues such as Long COVID, the Delta variant, or generalization of the model to other diseases manifested in medical images are promising applications of this unsupervised AI model.”

Related Links:
Massachusetts General Hospital


Gold Member
12-Channel ECG
CM1200B
Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
New
Sling
GoComfort
New
Captivator EMR Device
Captivator Endoscopic Mucosal Resection Device
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Critical Care

view channel
Image: The Al-based NIHA-HF, standalone software detects heart failure using 30-second lead I ECG (Photo courtesy of Simplex Quantum)

Breakthrough AI Technology Accurately Assesses Heart Failure Severity

Heart failure (HF) is a complex condition where the heart cannot effectively pump blood to meet the body’s needs due to underlying medical issues. It is marked by recurring episodes and frequent hospitalizations.... Read more

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.