We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App





Groundbreaking Study Uses AI-Powered Image Cell Analysis to Identify New COVID-19 Drug Available at Local Pharmacies

By HospiMedica International staff writers
Posted on 24 Aug 2021
A new groundbreaking study has revealed several drug contenders already in use for other purposes that have been shown to block or reduce SARS-CoV-2 infection in cells, including one dietary supplement that is already available at local pharmacies.

The study by researchers at the University of Michigan (Ann Arbor, MI, USA) used artificial intelligence (AI)-powered image analysis of human cell lines during infection with the novel coronavirus. The cells were treated with more than 1,400 individual FDA-approved drugs and compounds, either before or after viral infection, and screened, resulting in 17 potential hits. Ten of those hits were newly recognized, with seven identified in previous drug repurposing studies, including remdesivir, which is one of the few FDA-approved therapies for COVID-19 in hospitalized patients.

The team validated the 17 candidate compounds in several types of cells, including stem-cell derived human lung cells in an effort to mimic SARS-CoV2 infection of the respiratory tract. Nine showed anti-viral activity at reasonable doses, including lactoferrin, a protein found in human breast milk that is also available over the counter as a dietary supplement derived from cow’s milk. The team is soon launching clinical trials of the compound to examine its ability to reduce viral loads and inflammation in patients with SARS-CoV2 infection. Remarkably, the study also identified a class of compounds called MEK-inhibitors, typically prescribed to treat cancer, that appear to worsen SARS-CoV2 infection. The finding sheds light on how the virus spreads among cells. The next step will be to use electronic health records to see whether patients on these drugs have worse COVID-19 outcomes.

“Traditionally, the drug development process takes a decade—and we just don’t have a decade,” said Jonathan Sexton, Ph.D., assistant professor of Internal Medicine at the U-M Medical School and one of the senior authors on the paper. “The therapies we discovered are well positioned for phase 2 clinical trials because their safety has already been established.”

“Repurposing existing therapeutic interventions in the clinical setting has many advantages that result in significantly less time from discovery to clinical use, including documented safety profiles, reduced regulatory burden, and substantial cost savings,” said George A. Mashour, M.D., Ph.D., co-director of MICHR and founder/executive sponsor of the Center for Drug Repurposing.

Related Links:
University of Michigan


Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
12-Channel ECG
CM1200B
New
Hospital Stretcher
Millennium 5
New
Complete Hip System
Taperloc Complete Hip System
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Critical Care

view channel
Image: Samples of heart tissue from the study (Photo courtesy of Nathan Gianneschi/Northwestern University)

New Potent Injectable Therapy Could Prevent Heart Failure After Heart Attack

According to the U.S. Centers for Disease Control and Prevention, 6.7 million Americans aged 20 and older are living with heart failure, a condition in which the heart cannot pump enough blood to meet... Read more

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.