We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App





Highly Potent Mini-Antibodies '1000 Times' Better at Neutralizing SARS-CoV-2 Could Be Promising Agents to Treat COVID-19

By HospiMedica International staff writers
Posted on 06 Aug 2021
Researchers have developed mini-antibodies that efficiently block the SARS-CoV-2 virus and its dangerous new variants.

These so-called nanobodies developed by scientists at the Max Planck Institute for Biophysical Chemistry (Göttingen, Germany) and the University Medical Center Göttingen (Göttingen, Germany) bind and neutralize the virus up to 1000 times better than previously developed mini-antibodies. In addition, the scientists optimized their mini-antibodies for stability and resistance to extreme heat. This unique combination makes them promising agents to treat COVID-19. Since nanobodies can be produced at low costs in large quantities, they could meet the global demand for COVID-19 therapeutics. The new nanobodies are currently in preparation for clinical trials.

The mini-antibodies (also known as VHH antibodies or nanobodies) unite all the properties required for a potent drug against COVID-19. At first glance, the new nanobodies hardly differ from anti-Sars-CoV-2 nanobodies developed by other labs. They are all directed against a crucial part of the coronavirus spikes, the receptor-binding domain that the virus deploys for invading host cells. The nanobodies block this binding domain and thereby prevent the virus from infecting cells. The scientists are currently preparing the nanobodies for therapeutic use.

“We want to test the nanobodies as soon as possible for safe use as a drug so that they can be of benefit to those seriously ill with COVID-19 and those who have not been vaccinated or cannot build up an effective immunity,” said Matthias Dobbelstein, professor and director of the University Medical Center Göttingen’s Institute of Molecular Oncology.

Related Links:

Max Planck Institute for Biophysical Chemistry
University Medical Center Göttingen

Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
New
Cervical Seal
Omni Lok
New
Needle Guide Disposable Kit
Verza
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Critical Care

view channel
Image: Samples of heart tissue from the study (Photo courtesy of Nathan Gianneschi/Northwestern University)

New Potent Injectable Therapy Could Prevent Heart Failure After Heart Attack

According to the U.S. Centers for Disease Control and Prevention, 6.7 million Americans aged 20 and older are living with heart failure, a condition in which the heart cannot pump enough blood to meet... Read more

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.