We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App





Experimental Drug TEMPOL May Be Promising Oral Antiviral Treatment for COVID-19, Suggests New Research

By HospiMedica International staff writers
Posted on 07 Jun 2021
The experimental drug TEMPOL may be a promising oral antiviral treatment for COVID-19 and can limit SARS-CoV-2 infection by impairing the activity of a viral enzyme called “RNA replicase,” according to a new study of cell cultures.

The study by a team of researchers that included scientists at Penn State (University Park, PA, USA) and led by the National Institutes of Health’s Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) discovered TEMPOL’s effectiveness by evaluating a more basic question on how the virus uses its RNA replicase, an enzyme that allows SARS-CoV-2 to replicate its genome and make copies of itself once inside a cell.

The researchers found that RNA replicase (specifically a subunit of the enzyme called “nsp12”) requires iron-sulfur clusters for structural support. Their findings indicate that the SARS-CoV-2 RNA replicase requires two iron-sulfur clusters to function optimally. Earlier studies had mistaken these iron-sulfur cluster binding sites for zinc-binding sites, likely because iron-sulfur clusters degrade easily under standard experimental conditions. Identification of the correct cofactor was enabled by the Penn State team using a technique called Mössbauer spectroscopy.

Identifying this characteristic of the RNA replicase also enables researchers to exploit a weakness in the virus. TEMPOL can degrade iron-sulfur clusters, and previous research has shown the drug may be effective in other diseases that involve iron-sulfur clusters. In cell culture experiments with live SARS-CoV-2 virus, the study team found that the drug can inhibit viral replication. Based on previous animal studies of TEMPOL in other diseases, the study authors noted that the TEMPOL doses used in their antiviral experiments could likely be achieved in tissues that are primary targets for the virus, such as the salivary glands and the lungs. The study team plans on conducting additional animal studies and will seek opportunities to evaluate TEMPOL in a clinical study of COVID-19.

“The virtue of this technique is that it allows for identification and quantification of all iron-containing species contained in a sample,” said Carsten Krebs, Professor of Chemistry and of Biochemistry and Molecular Biology at Penn State.

"Why this enzyme requires iron-sulfur clusters, which are most often associated with electron transport, remains an intriguing question for the future," said Professor of Chemistry and of Biochemistry and Molecular Biology J. Martin Bollinger Jr., a member of the research team at Penn State.

Related Links:
Penn State


Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
12-Channel ECG
CM1200B
New
Enteral Feeding Pump
Instilar 1420
New
Lockable Drug Cabinet
MR2530
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Critical Care

view channel
Image: Lee Harrison, MD, shows Alexander Sundermann, MPH, CIC, FAPIC, a potential outbreak detected by the Enhanced Detection System for Healthcare-Associated Transmission (Photo courtesy of Nathan Langer/UPMC)

Hospital-Based System Combines AI and Genomic Surveillance to Quickly Detect Infectious Disease Outbreaks

The current approach used by hospitals to detect and prevent the transmission of infectious diseases among patients is outdated. These methods have remained largely unchanged for over a century.... Read more

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.