We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App





Machine Learning Model Predicts Treatment with Dialysis or Death for Hospitalized COVID-19 Patients

By HospiMedica International staff writers
Posted on 31 May 2021
Print article
Illustration
Illustration
A team of researchers have created a machine learning model to predict treatment with dialysis or death for hospitalized COVID-19 patients.

The study by researchers from the Mount Sinai Health System (New York, NY, USA) used a machine learning model to determine COVID-19 patients most at risk for treatment requiring dialysis or critical illness leading to death. SARS-CoV-2, the virus that causes COVID-19, has infected more than 103 million people worldwide. Acute kidney injury (AKI) treated with dialysis was a common complication in patients who were hospitalized with COVID-19. AKI is associated with increased risks for morbidity and mortality. Early prediction of which patients will need dialysis or experience critical illness, leading to mortality during hospital care can enhance appropriate monitoring, and better inform conversations with patients and their caretakers.

The Mount Sinai team developed and tested five different algorithms to predict patients requiring treatment with dialysis or critical illness leading to death on day 1, 3, 5, and 7 of the hospital stay, using data from the first 12 hours of admission to the Mount Sinai Health System. Assessed features included demographics, comorbidities, laboratory results, and vital signs within 12 hour of hospital admission. The five models created and tested were: the logistic regression, LASSO, random forest, and XGBoost with and without imputation. Out of the total model approaches used, XGBoost without imputation had the highest area under the receiver curve and area under the precision recall curve on internal validation for all time points. This model also had the highest test parameters on external validation across all time windows. Features including red cell distribution width, creatinine, and blood urea nitrogen were major drivers of model prediction.

While the Mount Sinai model requires further external review, such machine learning models can potentially be deployed throughout healthcare systems to help determine which COVID-19 patients are most at risk for adverse outcomes of the coronavirus. Early recognition of at-risk patients can enhance closer monitoring of patients and prompt earlier discussions regarding goals of care.

“The near universal use of electronic health records has created a tremendous amount of data, which has enabled us to generate prediction models that can directly aid in the care of patients,” said Dr. Girish Nadkarni, MD, Associate Professor in the Department of Medicine (Nephrology), Clinical Director of the Hasso Plattner Institute for Digital Health, and Co-Chair of the Mount Sinai Clinical Intelligence Center at the Icahn School of Medicine at Mount Sinai. “A version of this model is currently deployed at Mount Sinai Hospital in patients who are admitted with COVID-19.”

“As a nephrologist, we were overwhelmed with the increase in patients who had AKI during the initial surge of the COVID-19 pandemic,” said Dr. Lili Chan, MD, Assistant Professor in the Department of Medicine (Nephrology) at the Icahn School of Medicine at Mount Sinai. “Prediction models like this enable us to identify, early on in the hospital course, those at risk of severe AKI (those that required dialysis) and death. This information will facilitate clinical care of patients and inform discussions with patients and their families.”

“Machine learning allows us to discern complex patterns in large amounts of data,” said Dr. Akhil Vaid, MD, postdoctoral fellow in the Department of Genetics and Genomic Sciences at the Icahn School of Medicine at Mount Sinai, and member of the Mount Sinai Clinical Intelligence Center and the Hasso Plattner Institute for Digital Health at Mount Sinai. “For COVID-19 inpatients, this means being able to more easily identify incoming at-risk patients, while pinpointing the underlying factors that are making them better or worse. The underlying algorithm, XGBoost, excels in accuracy, speed, and other under-the-hood features that allow for easier deployment and understanding of model predictions.”

Related Links:
Mount Sinai Health System

Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
LED Surgical Light
Convelar 1670 LED+/1675 LED+/1677 LED+
New
Computed Tomography System
Aquilion ONE / INSIGHT Edition

Print article

Channels

Surgical Techniques

view channel
Image: The surgical team and the Edge Multi-Port Endoscopic Surgical Robot MP1000 surgical system (Photo courtesy of Wei Zhang)

Endoscopic Surgical System Enables Remote Robot-Assisted Laparoscopic Hysterectomy

Telemedicine enables patients in remote areas to access consultations and treatments, overcoming challenges related to the uneven distribution and availability of medical resources. However, the execution... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.