We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App





AI-Accelerated Method Monitors COVID-19 Disease Severity Over Time from Patient Chest CT Scans

By HospiMedica International staff writers
Posted on 31 Mar 2021
An AI-accelerated method could monitor COVID-19 disease severity over time from patient chest CT scans.

Researchers from NVIDIA (Santa Clara, CA, USA) and the US National Institutes of Health (NIH; Bethesda, MA, USA) studied the progression of lung opacities in chest CT images of COVID patients, and extracted insights about the temporal relationships between CT features and lab measurements. Quantifying CT opacities can tell doctors how severe a patient’s condition is. A better understanding of the progression of lung opacities in COVID patients could help inform clinical decisions in patients with pneumonia, and yield insights during clinical trials for therapies to treat the virus.

Selecting a dataset of more than 100 sequential chest CTs from 29 COVID patients from China and Italy, the researchers used an NVIDIA Clara AI segmentation model to automate the time-consuming task of segmenting the total lung in each CT scan. Expert radiologists reviewed the total lung segmentations, and manually segmented the lung opacities. To track disease progression, the researchers used generalized temporal curves, which correlated the CT imaging data with lab measurements such as white blood cell count and procalcitonin levels. They then used 3D visualizations to reconstruct the evolution of COVID opacities in one of the patients.

The team found that lung opacities appeared between one and five days before symptom onset, and peaked a day after symptoms began. They also analyzed two opacity subtypes - ground glass opacity and consolidation - and discovered that ground glass opacities appeared earlier in the disease, and persisted for a time after the resolution of the consolidation. The researchers showed how CT dynamic curves could be used as a clinical reference tool for mild COVID-19 cases, and might help spot cases that grow more severe over time. These curves could also assist clinicians in identifying chronic lung effects by flagging cases where patients have residual opacities visible in CT scans long after other symptoms dissipate.

Related Links:
NVIDIA
National Institutes of Health



Gold Member
12-Channel ECG
CM1200B
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
New
Pedicle Screw Platform
CREO DLX Stabilization System
New
Captivator EMR Device
Captivator Endoscopic Mucosal Resection Device
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Critical Care

view channel
Image: The Al-based NIHA-HF, standalone software detects heart failure using 30-second lead I ECG (Photo courtesy of Simplex Quantum)

Breakthrough AI Technology Accurately Assesses Heart Failure Severity

Heart failure (HF) is a complex condition where the heart cannot effectively pump blood to meet the body’s needs due to underlying medical issues. It is marked by recurring episodes and frequent hospitalizations.... Read more

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.