We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App





Machine Vision-Based Blood Analyzer Supports Validation of AI-based COVID Screening System

By HospiMedica International staff writers
Posted on 15 Mar 2021
Print article
Image: Sight OLO (Photo courtesy of Sight Diagnostics)
Image: Sight OLO (Photo courtesy of Sight Diagnostics)
A machine vision-based blood analyzer has been made part of an assessment of an AI-based test to rapidly screen for COVID-19 in patients arriving in emergency departments.

Sight Diagnostics (Tel Aviv, Israel) has deployed Sight OLO at the John Radcliffe Hospital - part of the Oxford University Hospitals NHS Foundation Trust (Oxford, UK) that allows rapid FBC testing, in minutes, for patients attending the emergency departments and is supporting validation of a rapid AI triage system for COVID-19. Sight OLO enables faster predictions to be generated by Oxford University’s ‘CURIAL AI’ screening test, which leverages patients’ routine vital signs and FBC results to predict the likelihood of a patient having COVID-19.

Developed by a cross-disciplinary team at Oxford University, the CURIAL algorithm has proven to be an effective triage tool that can rule-out COVID-19 within the first hour of patients coming to the hospital. Polymerase Chain Reaction (PCR) tests typically have a turnaround time of 12-48 hours and require specialist equipment and staff, while the more rapid lateral flow assays and antigen tests have produced mixed efficacy results. With CURIAL, Sight OLO could allow staff in emergency rooms to receive an accurate prediction to rule-out COVID-19 in under 30 minutes. About the size of a toaster oven, Sight OLO is compact and uses a cartridge-based system that does not require external reagents or routine calibration and maintenance, making it simple to set-up and operate wherever FBC is needed.

“Having accurate FBC results in minutes, from OLO, would help CURIAL make predictions even sooner, potentially reducing care delays and supporting infection control within hospitals. Our goal is to get the right treatment to patients sooner by helping rule-out Covid at triage for a majority of patients who don’t have the infection,” said Dr. Andrew Soltan, an Academic Clinician and a Machine Learning Researcher at Oxford University. “This project shows that artificial intelligence can work with rapid diagnostics to help us select the best care pathways and minimize risks of spreading the infection in hospitals.”

“We’re proud to collaborate with a cutting-edge institution like Oxford University on their CURIAL analysis program to help manage the effects of the pandemic,” said Yossi Pollak, CEO and Co-founder of Sight Diagnostics. “We see time and again when FBC results are made available to clinicians quickly and easily, patient care models are reconfigured for the better. The CURIAL project is a beacon of what’s possible, and we are keen to support other health institutions by enabling access to fast, convenient and accurate FBC through OLO.”

Related Links:
Oxford University Hospitals NHS Foundation Trust
Sight Diagnostics


Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
New
Monitor Arm
ITD Flexion
New
Digital Pump
Theia

Print article

Channels

Surgical Techniques

view channel
Image: The magnetics microrobots removed blood clots from sheep iliac artery (Photo courtesy of University of Twente)

Screw-Shaped Magnetic Microrobots to Transform Treatment for Patients with Inoperable Blood Clots

Cardiovascular conditions such as thrombosis pose a significant global health issue, with blood clots being responsible for one in four deaths worldwide each year. A blood clot can obstruct a blood vessel,... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.