We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App





New Machine Learning Technique Analyzes Electronic Health Records to Predict Mortality in COVID-19 Patients

By HospiMedica International staff writers
Posted on 19 Jan 2021
Researchers have used a machine learning technique called "federated learning" to examine electronic health records to better predict how COVID-19 patients will progress.

The researchers from the Mount Sinai Health System (New York, NY, USA) who built models using federated learning to enhance predictions of COVID-19 outcomes believe that the emerging technique holds promise to create more robust machine learning models that extend beyond a single health system without compromising patient privacy. More...
These models, in turn, can help triage patients and improve the quality of their care.

Federated learning is a technique that trains an algorithm across multiple devices or servers holding local data samples but avoids clinical data aggregation, which is undesirable for reasons including patient privacy issues. Mount Sinai researchers implemented and assessed federated learning models using data from electronic health records at five separate hospitals within the Health System to predict mortality in COVID-19 patients. They compared the performance of a federated model against ones built using data from each hospital separately, referred to as local models. After training their models on a federated network and testing the data of local models at each hospital, the researchers found the federated models demonstrated enhanced predictive power and outperformed local models at most of the hospitals.

"Machine learning models in health care often require diverse and large-scale data to be robust and translatable outside the patient population they were trained on," said the study's corresponding author, Benjamin Glicksberg, PhD, Assistant Professor of Genetics and Genomic Sciences at the Icahn School of Medicine at Mount Sinai, and member of the Hasso Plattner Institute for Digital Health at Mount Sinai and the Mount Sinai Clinical Intelligence Center. "Federated learning is gaining traction within the biomedical space as a way for models to learn from many sources without exposing any sensitive patient data. In our work, we demonstrate that this strategy can be particularly useful in situations like COVID-19."

"Machine learning in health care continues to suffer a reproducibility crisis," said the study's first author, Akhil Vaid, MD, postdoctoral fellow in the Department of Genetics and Genomic Sciences at the Icahn School of Medicine at Mount Sinai, and member of the Hasso Plattner Institute for Digital Health at Mount Sinai and the Mount Sinai Clinical Intelligence Center. "We hope that this work showcases benefits and limitations of using federated learning with electronic health records for a disease that has a relative dearth of data in an individual hospital. Models built using this federated approach outperform those built separately from limited sample sizes of isolated hospitals. It will be exciting to see the results of larger initiatives of this kind."

Related Links:
Mount Sinai Health System


Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
12-Channel ECG
CM1200B
New
Powered Surgical Stapler
ECHELON 3000 Stapler
New
Enteral Feeding Pump
Instilar 1420
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Critical Care

view channel
Image: the deep tissue in vivo sound printing (DISP) platform, which combines ultrasound with low-temperature–sensitive liposomes loaded with crosslinking agents (Photo courtesy of Elham Davoodi and Wei Gao/Caltech)

New Ultrasound-Guided 3D Printing Technique to Help Fabricate Medical Implants

3D bioprinting technologies hold considerable promise for advancing modern medicine by enabling the production of customized implants, intricate medical devices, and engineered tissues designed to meet... Read more

Surgical Techniques

view channel
Image: The engine-free, nonlinear, flexible, micro-robotic platform leverages AI to optimize GBM treatment (Photo courtesy of Symphony Robotics)

First-Ever MRI-Steerable Micro-Robotics to Revolutionize Glioblastoma Treatment

Glioblastoma Multiforme (GBM) is one of the most aggressive and difficult-to-treat brain cancers. Traditional surgical procedures, such as craniotomies, involve significant invasiveness, requiring large... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.