We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App





Cutting-Edge Hyperpolarized Xenon MRI Scanning Technique Can Detect Previously Unseen Lung Damage in COVID-19 Patients

By HospiMedica International staff writers
Posted on 04 Dec 2020
Print article
Illustration
Illustration
Early findings from a study into longer-term effects of COVID-19 suggest the use of cutting-edge scanning techniques may detect previously unseen lung damage.

Research by the University of Sheffield (Sheffield UK), in collaboration with the University of Oxford (Oxford, UK), is the first in Europe to use hyperpolarized xenon gas with MRI scanning to identify the impact on lung function as patients recover from COVID-19, when standard MR and CT scans may be normal.

In some people, the symptoms of COVID-19 can continue for many months after the infection, which may adversely affect their quality of life, for example many people complain of persistent breathlessness and fatigue. The researchers are investigating possible reasons for patients remaining short of breath following treatment for COVID-19 pneumonia, even after they have been discharged from hospital. They are working with an initial group of 40 patients in Sheffield and Oxford over the next six months. So far, the hyperpolarized xenon MRI technique has identified weakened lung function in all patients who have taken part in the study - this damage to lungs from COVID-19 is not visible on a standard MRI or CT scan.

Hyperpolarized xenon MRI is unique in its ability to measure gas transfer in the lungs with imaging and identify where the damage caused by COVID-19 pneumonia has occurred. Early data suggests that the ability to transfer oxygen from the lungs into the bloodstream when breathing is visibly impaired for some time, even after hospital discharge following COVID-19 pneumonia. This reduction in the function of the lungs detected in the study may be an explanation for some patients experiencing persistent symptoms even with seemingly ‘normal’ results from standard GP and hospital tests. The striking early results have resulted in discussions to expand the study to involve more patients in the community, to identify the overall prevalence of lung damage and the speed of recovery from the virus.

“Hyperpolarized xenon MRI offers a unique means of imaging impairment to oxygen uptake in the lungs caused by COVID-19 infection and its after effects,” said Professor Jim Wild, Head of Imaging and NIHR Research Professor of Magnetic Resonance Physics at the University of Sheffield. “In other fibrotic lung diseases we have shown the methods to be very sensitive to this impairment and we hope the work can help understand COVID-19 lung disease.”

“We may be getting an insight into why some patients have symptoms long after they have left hospital, and when other tests are normal,” said Professor Fergus Gleeson, Consultant Radiologist at Oxford University Hospitals NHS Foundation Trust and the University of Oxford’s Head of Academic Radiology. “This may help us identify patients that may potentially benefit from treatment even after discharge, for example with steroids or other therapies.”

Related Links:
The University of Sheffield
University of Oxford


Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
New
Medical-Grade POC Terminal
POC-821
New
Transducer Covers
Surgi Intraoperative Covers

Print article

Channels

Surgical Techniques

view channel
Image: Schematic diagram of intra-articular pressure detection using a sensory system in a sheep model (Photo courtesy of Science China Press)

Novel Sensory System Enables Real-Time Intra-Articular Pressure Monitoring

Knee replacement surgery is a widely performed procedure to relieve knee pain and restore joint function, with over one million surgeries conducted annually. However, 10%-20% of patients remain dissatisfied... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.