We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App





AI-Powered COVID-19 CT Algorithm Provides Quantitative Measurement for Suspected Coronavirus Patients

By HospiMedica International staff writers
Posted on 03 Dec 2020
Print article
Illustration
Illustration
The latest updated version of an artificial intelligence (AI)-driven COVID-19 medical imaging solution can now help radiologists distinguish between coronavirus and other abnormalities, such as common pneumonia on chest CT scans.

RADLogics (New York, NY, USA) has unveiled the latest version of the company’s AI-Powered COVID-19 CT algorithm. Building on the company’s AI-Powered solution that has processed and analyzed hundreds of thousands of suspected coronavirus cases globally, the latest update delivers a complex deep learning system consisting of several models utilized to detect, localize and segment regions in the lungs infected with COVID-19. The AI-Powered solutions are poised to not only alleviate the increased burden associated with COVID-19, but to help support improved outcomes by reducing burnout and errors.

As part of RADLogics’ latest version of its algorithm, three different analyses can now be performed simultaneously on raw chest CT image scans including: 1) a lungs region-of-interest are cropped with lung abnormalities detected; 2) the lung lobes are segmented and; 3) if the nodules plug-in is activated, focal Ground Glass Opacities (GGOs) are detected. According to leading physicians, these measurements are key features in determining patient classification into COVID-19 and non-COVID-19 indications. The overall system produces the decision whether the case is suspected for COVID-19 with a confidence level (in percentages). These measurements along with other features are used by radiologists to distinguish between COVID-19 and other abnormalities such as common pneumonia.

To further validate the ability of AI to distinguish COVID-19 from other respiratory diseases, members of the RADLogics’ algorithm development team, led by Professor Hayit Greenspan from Tel Aviv University, studied a fully automated AI-based system that takes as input chest CT scans and triages COVID-19 cases. The study explored multiple descriptive features, including lung and infections statistics, texture, shape and location, to train a machine learning-based classifier that distinguishes between COVID-19 and other lung abnormalities (including community acquired pneumonia). The research evaluated the system on a dataset of 2,191 CT cases and demonstrated a robust outcome with 90.8% sensitivity at 85.4% specificity with 94.0% ROC-AUC.

“With the US in the midst of an unprecedented rise in COVID-19 infections, with current hospitalizations at an all-time record of more than 90,000 patients, there is an increasing need for AI solutions in medical imaging,” said Moshe Becker, CEO and Co-Founder of RADLogics. “Coronavirus-related infection rates are experiencing a sharp increase in most states - from rural communities to urban areas - that have the potential to overwhelm ER, ICU and radiology teams with a surge of patients, and AI-Powered medical imaging analysis solutions are poised to reduce this pressure through improved patient triage, monitoring and management.”

Related Links:
RADLogics

Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
12-Channel ECG
CM1200B
New
Parenteral Nutrition Solution
Olimel Portfolio
New
Phlebotomy Chair
CHE03/BH

Print article

Channels

Surgical Techniques

view channel
Image: The innovative endoscope precisely identifies and removes tumors with laser light (Photo courtesy of Science Advances 10, eado9721 (2024). DOI: 10.1126/sciadv.ado9721)

Innovative Endoscope Precisely Identifies and Selectively Removes Tumor Tissue in Real Time

One of the most significant challenges in cancer surgery is completely removing a tumor without harming surrounding healthy tissue. Current techniques, such as intraoperative tissue sampling, only provide... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.