We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App





COVID-19 Findings Presented at RSNA 2020 Suggest AI Can Boost CT's Performance in Predicting Disease Severity

By HospiMedica International staff writers
Posted on 01 Dec 2020
Chest computed tomography (CT) when combined with artificial intelligence (AI) can become a valuable tool for diagnosing COVID-19, according to presentations on chest imaging made at a scientific session at the RSNA 2020.

In the first presentation, a team of scientists shared results from a study conducted by Nvidia (Santa Clara, CA, USA) that combined a deep-learning algorithm with chest CT to predict if COVID-19 patients needed to be admitted to the intensive care unit (ICU). More...
The team analyzed 632 chest CT scans of COVID-19 patients confirmed by RT-PCR testing, out of which 69 patients were admitted to the ICU. The scientists developed a whole-lung segmentation algorithm and evaluated its effectiveness in terms of overall accuracy, sensitivity, and specificity when used along with CT. They found that the algorithm demonstrated high accuracy, specificity, and negative predictive value (NPV) in the identification of COVID-19 and predicting ICU admission by using chest CT. These findings indicate that AI can significantly improve the performance of CT in predicting COVID-19 severity.

"This deep-learning algorithm can alert the clinician to the enhanced potential of ICU admission, when combined with other clinical features," said Ziyue Xu, PhD, senior scientist at Nvidia. "Based upon chest CT alone, AI-based deep-learning algorithms can reasonably predict clinical outcomes such as ICU admission in patients with COVID-19 who underwent CT and PCR on the day of admission. The model is feasible with reasonable accuracy and specificity of prediction."

In another presentation, a team of researchers from the University of Pennsylvania (Philadelphia, PA, USA) highlighted their new approach for quantifying the percentage of lung volume involved in airspace disease on chest X-rays by using a convolutional neural network (CNN) algorithm based on 1,000 chest CT scans of COVID-19 patients. The study involved 86 patients with positive RT-PCR results who had chest CT and chest X-ray performed less than 48 hours apart. The algorithm used quantitative maps of lung tissue thickness and manifestations of airspace disease to project the CT exams' 3D lung and airspace disease segmentation on reconstructed X-rays. The researchers found that the CNN-reconstructed X-rays were as good as the human CT exam readers in quantifying airspace disease with CT recording a rate of 24.3% as against a rate of 24.4% by the CNN's digitally reconstructed X-rays.

"This approach may increase efficiency and consistency in chest x-ray interpretation of COVID-19 patients, especially when applied to longitudinal chest x-ray data to inform management," said Dr. Eduardo Jose Mortani Barbosa of the University of Pennsylvania.

Related Links:
Nvidia
University of Pennsylvania



Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
New
Warming Cabinet
EC1850BL
New
Mattress System
Apollo Infant Dynamic
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Critical Care

view channel
Image: the deep tissue in vivo sound printing (DISP) platform, which combines ultrasound with low-temperature–sensitive liposomes loaded with crosslinking agents (Photo courtesy of Elham Davoodi and Wei Gao/Caltech)

New Ultrasound-Guided 3D Printing Technique to Help Fabricate Medical Implants

3D bioprinting technologies hold considerable promise for advancing modern medicine by enabling the production of customized implants, intricate medical devices, and engineered tissues designed to meet... Read more

Surgical Techniques

view channel
Image: The engine-free, nonlinear, flexible, micro-robotic platform leverages AI to optimize GBM treatment (Photo courtesy of Symphony Robotics)

First-Ever MRI-Steerable Micro-Robotics to Revolutionize Glioblastoma Treatment

Glioblastoma Multiforme (GBM) is one of the most aggressive and difficult-to-treat brain cancers. Traditional surgical procedures, such as craniotomies, involve significant invasiveness, requiring large... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.