We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App





AI Algorithm Combines CT Images with Non-Imaging Data to Accurately Predict COVID-19 Patient Outcomes

By HospiMedica International staff writers
Posted on 24 Nov 2020
Print article
Illustration
Illustration
A team of engineers at the Rensselaer Polytechnic Institute (Troy, NY, USA) has demonstrated how a new algorithm they developed was able to successfully predict whether or not a COVID-19 patient would need ICU intervention.

With communities across the nation experiencing a wave of COVID-19 infections, clinicians need effective tools that will enable them to aggressively and accurately treat each patient based on their specific disease presentation, health history, and medical risks. The artificial intelligence-based approach could be a valuable tool in determining a proper course of treatment for individual patients.

The research team developed this method by combining chest computed tomography (CT) images that assess the severity of a patient’s lung infection with non-imaging data, such as demographic information, vital signs, and laboratory blood test results. By combining these data points, the algorithm is able to predict patient outcomes, specifically whether or not a patient will need ICU intervention. The algorithm was tested on datasets collected from a total of 295 patients from three different hospitals - one in the US, one in Iran, and one in Italy. Researchers were able to compare the algorithm’s predictions to what kind of treatment a patient actually ended up needing. The researchers will now integrate their new algorithm with another developed previously to assess a patient’s risk of cardiovascular disease using chest CT scans.

“We know that a key factor in COVID mortality is whether a patient has underlying conditions and heart disease is a significant comorbidity,” said Pingkun Yan, an assistant professor of biomedical engineering at Rensselaer Polytechnic Institute who led the research team. “How much this contributes to their disease progress is, right now, fairly subjective. So, we have to have a quantification of their heart condition and then determine how we factor that into this prediction.”

Related Links:
Rensselaer Polytechnic Institute

Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
New
BiPAP Machine
Breath Smart Series
New
Carotid Artery Stent
Roadsaver

Print article

Channels

Surgical Techniques

view channel
Image: The innovative endoscope precisely identifies and removes tumors with laser light (Photo courtesy of Science Advances 10, eado9721 (2024). DOI: 10.1126/sciadv.ado9721)

Innovative Endoscope Precisely Identifies and Selectively Removes Tumor Tissue in Real Time

One of the most significant challenges in cancer surgery is completely removing a tumor without harming surrounding healthy tissue. Current techniques, such as intraoperative tissue sampling, only provide... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.