We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App





AI-Based Digital Biomarker Could Assist in Early Intervention in High-Risk COVID-19 Patients

By HospiMedica International staff writers
Posted on 22 Sep 2020
Print article
Image: AI-Based Digital Biomarker Could Assist in Early Intervention in High-Risk COVID-19 Patients (Photo courtesy of Business Wire)
Image: AI-Based Digital Biomarker Could Assist in Early Intervention in High-Risk COVID-19 Patients (Photo courtesy of Business Wire)
A first-in-kind tool that collects and analyzes continuous physiologic data could provide early clinical indicators of COVID-19 decompensation, offering healthcare providers invaluable insight necessary to intervene earlier and reduce poor patient outcome.

The National Cancer Institute (NCI) and the National Institute of Biomedical Imaging and Bioengineering (NIBIB) of the National Institutes of Health (NIH Bethesda, MA, USA) have awarded a contract to PhysIQ (Chicago, IL, USA) to develop an AI-based COVID-19 Decompensation Index (CDI) Digital Biomarker to address the rapid decline of high-risk COVID-19 patients. The new early warning system under development could allow providers to intervene sooner when a COVID-19 patient is clinically surveilled from home and begins to worsen. Rather than relying on point measurements, such as temperature and SpO2, that are known to be lagging or insensitive indicators of COVID-19 decompensation, continuous multi-parameter vital signs will be used to establish a targeted biomarker for COVID-19.

PhysIQ will develop and validate a CDI algorithm that builds off existing wearable biosensor-derived analytics generated by physIQ’s pinpointIQ end-to-end cloud platform for continuous monitoring of physiology. The data will be gathered through a clinical study of COVID-19 positive patients and build upon work already in-place for monitoring COVID-19 patients convalescing at home. For patients who participate in the program, physiological data will be collected before and after their admission to the hospital.

In the development phase of this project, physIQ and its clinical partner will monitor participants who are confirmed COVID-19 positive, whether recovering at home or following a discharge from the hospital. During the validation phase, physIQ will evaluate lead time to event statistics, decompensation severity assessments, and the ability for CDI to predict decompensation severity. The study is designed to capture data from a large, diverse population to investigate CDI performance differences among subgroups based on sex/gender and racial/ethnic characteristics. The project will not only enable the development and validation of the CDI, but also collect rich clinical data correlative with outcomes and symptomology related to COVID-19 infection. The index will build on physIQ’s prior FDA-cleared, AI-based multivariate change index (MCI) that has amassed more than 1.5 million hours of physiologic data, supporting development of this targeted digital biomarker for COVID-19.

“Despite the technological advances and attention paid to COVID-19, the healthcare community is still monitoring patient vitals the very same way as we did in the 1800s,” said Steven Steinhubl MD, Director of Digital Medicine at Scripps Translational Science Institute (STSI) and a physIQ advisor. “With the advances in digital technology, AI and wearable biosensors, we can deliver personalized medicine remotely giving caregivers new tools to proactively address this pandemic. For that reason alone, this decision by the NIH has the potential to have a monumental impact on our healthcare system and how we manage COVID-19 patients.”

Related Links:
The National Institutes of Health (NIH)
PhysIQ


Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
12-Channel ECG
CM1200B
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
Examination Table
Powerline Backrest Top

Print article

Channels

Critical Care

view channel
Image: The permeable wearable electronics developed for long-term biosignal monitoring (Photo courtesy of CityUHK)

Super Permeable Wearable Electronics Enable Long-Term Biosignal Monitoring

Wearable electronics have become integral to enhancing health and fitness by offering continuous tracking of physiological signals over extended periods. This monitoring is crucial for understanding an... Read more

Surgical Techniques

view channel
Image: NTT and Olympus have begun the world\'s first joint demonstration experiment of a cloud endoscopy system (Photo courtesy of Olympus)

Cloud Endoscopy System Enables Real-Time Image Processing on the Cloud

Endoscopes, which are flexible tubes inserted into the body's natural openings for internal examination and biopsy collection, are becoming increasingly vital in medical diagnostics. Their minimal invasiveness... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The PATHFAST hs-cTnI-II high-sensitivity troponin assay has been developed for the PATHFAST Biomarker Analyzer (Photo courtesy of Polymedco)

POC Myocardial Infarction Test Delivers Results in 17 Minutes

Chest pain is the second leading cause of emergency department (ED) visits by adults in the United States, generating over 7 million visits annually. In the event of a suspected heart attack, physicians... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.