We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App





New Insight into Structural Mechanism of Coronavirus Receptor Binding to Aid Development of COVID-19 Treatments and Vaccines

By HospiMedica International staff writers
Posted on 18 Sep 2020
Print article
Image: New Insight into Structural Mechanism of Coronavirus Receptor Binding to Aid Development of COVID-19 Treatments and Vaccines (Photo courtesy of Francis Crick Institute)
Image: New Insight into Structural Mechanism of Coronavirus Receptor Binding to Aid Development of COVID-19 Treatments and Vaccines (Photo courtesy of Francis Crick Institute)
New insight into the mechanism of infection of the SARS-CoV-2 coronavirus could equip research groups with the understanding needed to inform studies into COVID-19 vaccines and treatments.

The surface of SARS-CoV-2, the virus that causes COVID-19, is covered in proteins called spikes, which enable the virus to infect human cells. The infection begins when a spike protein binds with ACE2 cell surface receptors and, at later stages, catalyses the release of the virus genome into the cell. However, the exact nature of the ACE2 binding to the SARS-CoV-2 spike remains unknown. Researchers from the Francis Crick Institute (London, UK) have now found that the spike protein on the surface of the SARS-CoV-2 coronavirus can adopt at least 10 distinct structural states, when in contact with the human virus receptor ACE2.

In the first study to examine the binding mechanism between ACE2 and the spike protein in its entirety, the researchers have characterized 10 distinct structures that are associated with different stages of receptor binding and infection. The team incubated a mixture of spike protein and ACE2 before trapping different forms of the protein by rapid freezing in liquid ethane. They examined these samples using cryo-electron microscopy, obtaining tens of thousands of high-resolution images of the different binding stages. They observed that the spike protein exists as a mixture of closed and open structures., Following ACE2 binding at a single open site, the spike protein becomes more open, leading to a series of favorable conformational changes, priming it for additional binding. Once the spike is bound to ACE2 at all three of its binding sites, its central core becomes exposed, which may help the virus to fuse to the cell membrane, permitting infection. The researchers hope that the more they can uncover about how SARS-CoV-2 differs from other coronaviruses, the more targeted they can be with the development of new treatments and vaccines. The team continues to examine the structures of spikes of SARS-CoV-2 and related coronaviruses in other species to better understand the mechanisms of viral infection and evolution.

“As we unravel the mechanism of the earliest stages of infection, we could expose new targets for treatments or understand which currently available anti-viral treatments are more likely to work,” said Antoni Wrobel, co-lead author and postdoctoral training fellow in the Structural Biology of Disease Processes Laboratory at the Crick.

“There’s so much we still don’t know about SARS-CoV-2, but its basic biology contains the clues to managing this pandemic,” said Steve Gamblin, group leader of the Structural Biology of Disease Processes Laboratory at the Crick. “By understanding what makes this virus distinctive, researchers could expose weaknesses to exploit.”

Related Links:
Francis Crick Institute

Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
New
Hospital Bed
Alphalite
New
Endoscopic Vessel Harvesting
VirtuoSaph Plus

Print article

Channels

Critical Care

view channel
Image: Researchers are working to possibly reduce antibiotic-resistant infections in open bone fractures by employing nanotechnology (Photo courtesy of Zane Lacko/WVU)

Nanotechnology Could Combat Antibiotic-Resistant Infections in Open Bone Fractures

Every year, over 150,000 people in the United States experience open bone fractures. Approximately 10% of these individuals develop infections, which can result in reduced limb function, additional surgeries,... Read more

Surgical Techniques

view channel
Image: A wireless, fully implantable LVAD system could reduce the risk of infections and complications (Photo courtesy of 123RF)

Wireless, Fully Implantable LVAD System to Make Life Easier for Heart Failure Patients

Left Ventricular Assist Devices (LVADs) have traditionally relied on physical drivelines to provide power, creating a connection through the patient's skin. These drivelines increase the risk of infections... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.