We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App





AI Models Can Predict Individual Risk of Hospitalization for COVID Using HIE Data

By HospiMedica International staff writers
Posted on 27 Jan 2022
Print article
Illustration
Illustration

A study has demonstrated how clinical data from healthcare systems can be used to better inform public health decision-making.

In a new study, researchers at Regenstrief Institute (Indianapolis, IN, USA) and Indiana University (Bloomington, IN, USA) demonstrated that machine learning models trained using clinical data from a statewide health information exchange can predict, on a patient level, the likelihood of hospitalization of individuals with the virus. The researchers used clinical data from 96,026 individuals from all 957 zip codes in Indiana to train decision models that predicted healthcare resource utilization.

“It has been quite challenging to bring the bread-and-butter data generated by healthcare systems together with public health decision-making - entities which have long been separate and distinct,” said study senior author Shaun Grannis, M.D., M.S., Regenstrief Institute vice president for data and analytics and professor of family medicine at Indiana University School of Medicine. “Our work shows how you can build and employ AI (artificial intelligence) models to securely utilize the clinical information in a health information exchange to support public health needs such as predicting hospital utilization within one week and within six weeks of onset of COVID infection.

“When new circumstances requiring rapid response arise, such as emergence of omicron or other new variants, once there are sufficient cases to train models, one can confidently access and plug clinical data into these readily available models to make accurate public health predictions and provide valuable insights into patient-level need for healthcare resource utilization,” said Dr. Grannis.

“Since the onset of COVID-19, researchers, healthcare systems, public health departments and others have leveraged existing data repositories and health information infrastructure for rapid analytics,” said study first author Suranga Kasturi, PhD, a Regenstrief Institute research scientist and an assistant professor of pediatrics at IU School of Medicine. “Machine learning has been invaluable in these efforts.”

“But any model is only as good as the data that goes into it,” he added. “The broad, robust data from the Indiana Network for Patient Care is representative of the US population. What we have done could be characterized as a precursor of how AI tools can be deployed across the entire country with the important caveat that whatever models are used should be evaluated for fairness across all subpopulations.”

Related Links:
Regenstrief Institute 
Indiana University 

Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
New
Digital Radiographic System
OMNERA 300M
New
Cannulating Sphincterotome
TRUEtome

Print article

Channels

Surgical Techniques

view channel
Image: The surgical team and the Edge Multi-Port Endoscopic Surgical Robot MP1000 surgical system (Photo courtesy of Wei Zhang)

Endoscopic Surgical System Enables Remote Robot-Assisted Laparoscopic Hysterectomy

Telemedicine enables patients in remote areas to access consultations and treatments, overcoming challenges related to the uneven distribution and availability of medical resources. However, the execution... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.