We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App





Machine Learning-Enabled COVID-19 Prognostic Tool Supports Clinical Decision-Making for Emergency Department Discharge

By HospiMedica International staff writers
Posted on 26 Jan 2022
Print article
Illustration
Illustration

Researchers who evaluated the real-time performance of a machine learning (ML)-enabled, COVID-19 prognostic tool found that it supported clinical decision-making for emergency department discharge at hospitals.

A multidisciplinary team of intensivists, hospitalists, emergency doctors, and informaticians at the University of Minnesota Medical School (Minneapolis, MN, USA) evaluated the tool which delivered clinical decision support to emergency department providers to facilitate shared decision-making with patients regarding discharge.

The University research team successfully developed and implemented a COVID-19 prediction model that performed well across gender, race and ethnicity for three different outcomes. The logistic regression algorithm created to predict severe COVID-19 performed well in the persons under investigation, although developed on a COVID-19 positive population.

A logistic regression model ML-enabled can be developed, validated, and implemented as clinical decision support across multiple hospitals while maintaining high performance in real-time validation and remaining equitable. The researchers recommend that the effect on patient outcomes and resource use needs to be evaluated and further researched with the ML model.

“COVID-19 has burdened healthcare systems from multiple different facets, and finding ways to alleviate stress is crucial,” said Dr. Monica Lupei, an assistant professor at the U of M Medical School and medical director M Health Fairview University of Minnesota Medical Center - West Bank. “Clinical decision systems through ML-enabled predictive modeling may add to patient care, reduce undue decision-making variations and optimize resource utilization — especially during a pandemic.”

Related Links:
University of Minnesota Medical School

Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
New
Standing Sling
Sara Flex
New
Diagnostic Ultrasound System
MS1700C

Print article

Channels

Surgical Techniques

view channel
Image: The surgical team and the Edge Multi-Port Endoscopic Surgical Robot MP1000 surgical system (Photo courtesy of Wei Zhang)

Endoscopic Surgical System Enables Remote Robot-Assisted Laparoscopic Hysterectomy

Telemedicine enables patients in remote areas to access consultations and treatments, overcoming challenges related to the uneven distribution and availability of medical resources. However, the execution... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.