We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App





Smartwatch-Based Algorithm Detects Early Signs of Viral Infections, Including COVID-19

By HospiMedica International staff writers
Posted on 01 Nov 2021
Print article
Image: Smartwatch-Based Algorithm Detects Early Signs of COVID-19 (Photo courtesy of physIQ)
Image: Smartwatch-Based Algorithm Detects Early Signs of COVID-19 (Photo courtesy of physIQ)

Researchers have developed a smartwatch-based algorithm to detect early signs of viral infections, including COVID-19.

Purdue University (West Lafayette, IN, USA) and physIQ (Chicago, IL, USA) have announced the co-development of a viral detection algorithm for smartwatches. This innovation will be the result of a collaboration between physIQ and university engineers. The algorithm will be commercialized by physIQ, which develops solutions designed to improve health care outcomes by applying artificial intelligence (AI) to real-time physiological data from wearable sensors.

The research involved a study of 100 participants, including Purdue students, staff and faculty, to determine whether wearing a smartwatch to collect data was practical, unobtrusive and user-friendly. Each participant received a Samsung Galaxy smartwatch with a pre-loaded physIQ app to collect data. Along with the smartwatch, they also wore FDA-cleared adhesive chest-based biosensors to capture a single-lead electrocardiogram signal and multiple other parameters for five days of continuous monitoring. The researchers then analyzed data from the app remotely using physIQ's cloud-based accelerateIQ platform.

Data from the chest patches were processed by physIQ's U.S. Food and Drug Administration-cleared AI-based algorithms in deriving heart rate, respiration rate and heart rate variability. These data served as "gold standard" references to compare with data from the smartwatches. The viral infection detection algorithm complements physIQ's other health care applications. The goal across all of physIQ's applications is the ability to characterize dynamic human physiology over time, whether it is for assessing the efficacy of a new therapy, safety monitoring during treatment or general wellness.

"Smartwatches are well-suited for the detection of early viral infection, including COVID-19," said Craig Goergen, Purdue's Leslie A. Geddes Associate Professor of Biomedical Engineering, who led the research. “Infections can happen at any time, making the continuously tracked data available through an individual's smartwatches uniquely suited to identify the earliest signs of illness. In particular, knowledge of a person's usual heart rate and respiratory during sleep and activity over long periods of time is especially valuable for detecting subtle changes from normal.”

"The algorithms for enabling early detection are built off physiological features derived from the biosensor data collected by the smartwatches," said Stephan Wegerich, physIQ's chief science officer. "Generating accurate and robust physiological features forms the input to subsequent viral detection algorithms. This requires the development of sophisticated signal processing and machine learning algorithms. Combined, these make the most out of smartwatch biosensor data, which is a big part of our collaboration with Purdue."

Related Links:
Purdue University 
physIQ 

New
Gold Member
X-Ray QA Meter
T3 AD Pro
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
New
Monitor Cart
Tryten S5
New
LED Examination Lamp
Clarity 50 LED

Print article

Channels

Surgical Techniques

view channel
Image: The surgical team and the Edge Multi-Port Endoscopic Surgical Robot MP1000 surgical system (Photo courtesy of Wei Zhang)

Endoscopic Surgical System Enables Remote Robot-Assisted Laparoscopic Hysterectomy

Telemedicine enables patients in remote areas to access consultations and treatments, overcoming challenges related to the uneven distribution and availability of medical resources. However, the execution... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.