We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App





Innovative Device That Allows Two COVID-19 Patients to Be Ventilated by Single Machine to Help End Worldwide Ventilator Shortage

By HospiMedica International staff writers
Posted on 11 Oct 2021
Print article
Image: The Eucovent (Photo courtesy of University of South Florida)
Image: The Eucovent (Photo courtesy of University of South Florida)

A prototype device that allows two patients to be ventilated by a single machine could help solve the critical shortage of lifesaving ventilators seen around the world throughout the COVID-19 pandemic.

The Eucovent, a patent-pending device developed by biomedical engineering graduates from the University of South Florida (Tampa, FL, USA), is being seen as a lifesaving medical innovation. Among the novel solutions to problems with co-ventilation, there are existing devices capable of “splitting” airflow to multiple patients, although most available solutions do not offer any type of customization. This is particularly problematic as patients require different volumes of airflow depending on their lung compliance and body weight, among other factors. For example, a 150-pound woman might require substantially less airflow than a 250-pound man.

To solve this, the team of biomedical engineering graduates employed two primary techniques: dynamic resistance and time multiplexing. Dynamic resistance refers to an obstruction that restricts the amount of air delivered to each patient. To accomplish this, the group fabricated custom valves that can be independently adjusted to meet each patient’s individual airflow needs. By using time multiplexing, a common digital signals technique, the device can alternate between patients, efficiently delivering breaths to each person independently. Along with these two primary solutions, the team members had to utilize all of their undergraduate research experience for the project. Using their knowledge of biomechanics, along with such methods as 3D printing, computer programming and modeling, as well as computer-aided design, the group was able to complete and test the prototype with much success.

The relevance of such a device became clear during the COVID-19 pandemic, as hospitals around the world struggled to provide ventilators to every patient who needed one. The Eucovent effectively doubles a hospital’s existing capacity without having to purchase additional ventilators, which can cost upwards of $15,000 per unit. The team says its use reaches far beyond the current pandemic, with applications in natural disaster settings, remote locations and low-resource areas. The team now team plans to publish this work and continue to improve the design while they await patent approval.

“We believe the Eucovent provides many benefits, including cost and safety,” said USF student Carolyna Yamamoto Alves Pinto who helped develop the device. “Compared to a new ventilator, the device is extremely low-cost, making ventilation more accessible and affordable. It also offers a higher level of patient care compared to existing solutions, making it a safer and more reliable option for co-ventilation.”

Related Links:
University of South Florida 

Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
New
Vacuum-Assisted Breast Biopsy Device
Celero
New
Patient Warming Blanket
Patient Warming Blanket

Print article

Channels

Critical Care

view channel
Image: Mesenchymal stromal cells are delivered directly into the lungs using a bronchoscope (Photo courtesy of Stem Cell Res Ther. 2025. DOI: 10.1186/s13287-025-04289-3)

Novel Intrabronchial Method Delivers Cell Therapies in Critically Ill Patients on External Lung Support

Until now, administering cell therapies to patients on extracorporeal membrane oxygenation (ECMO)—a life-support system typically used for severe lung failure—has been nearly impossible.... Read more

Surgical Techniques

view channel
Image: Intravascular imaging can improve outcomes for complex stenting procedures in patients with high-risk calcified coronary artery disease (Photo courtesy of Shutterstock)

Intravascular Imaging for Guiding Stent Implantation Ensures Safer Stenting Procedures

Patients diagnosed with coronary artery disease, which is caused by plaque accumulation within the arteries leading to chest pain, shortness of breath, and potential heart attacks, frequently undergo percutaneous... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.