We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Siemens Healthineers

Provides customized electronic systems and advanced imaging, diagnostics, therapy, and healthcare IT solutions for th... read more Featured Products: More products

Download Mobile App





Siemens AI-based COVID-19 Severity Algorithm Becomes Available to Help Clinicians Predict Progression to Severe Disease

By HospiMedica International staff writers
Posted on 17 Aug 2021
Print article
Illustration
Illustration
Siemens Healthineers (Erlangen, Germany) has developed a real-time, AI-based predictive tool that was built using data from over 14,000 COVID-19 patients, with the goal of helping clinicians identify SARS-CoV-2 patients at risk of progressing to severe outcomes.

The company plans to interface the algorithm into the Atellica Data Manager software in the future. Through a year-long collaboration with a number of leading healthcare institutions across the globe, Siemens has developed the Atellica COVID-19 Severity Algorithm, a model designed to help predict the potential likelihood of progression to severe disease and life-threatening multi-organ dysfunction in COVID-19 patients. Leveraging de-identified COVID-19 patient data from more than 14,000 COVID-19 patients from multiple healthcare institutions worldwide, nine clinically significant lab parameters were identified and selected for inclusion in the algorithm. In addition to patient age, D-dimer, Lactate dehydrogenase (LDH), Lymphocyte %, Eosinophil %, Creatinine, C-reactive protein (CRP), Ferritin, PT-INR, and high-sensitivity Cardiac Troponin-I are used to help predict the likelihood of disease progression to severe disease endpoints.

By entering a potential patient’s lab values and age, the algorithm will generate a COVID-19 clinical severity score, including projected probability of progression to ventilator use, end-stage organ damage, and 30-day in-hospital mortality. The AI-based algorithm has been interfaced to the Atellica Data Manager software and is currently being evaluated as Investigational Use Only to help assess potential benefit to patient care. With integration into the existing physician order/sample processing/result reporting workflow, a later generation of the algorithm could provide clinical decision support capabilities to support standardized testing protocols for patients positive for COVID-19.

“We want healthcare providers to have access to a predictive tool that leverages our expertise in artificial intelligence and helps advance the understanding of how to improve patient care for those affected by COVID-19,” said Deepak Nath, PhD, President of Laboratory Diagnostics, Siemens Healthineers. "With much of the world still in the throes of the pandemic, facing strict resource allocations, the ability to quickly identify patients at risk of progressing to severe disease in real-time could potentially assist in expediting triage. Early introduction of the most appropriate state-of-the-art treatments has been demonstrated to improve survival in high-risk patients."


Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
New
Digital Radiographic System
OMNERA 300M
New
Blanket Warming Cabinet
EC250

Print article

Channels

Surgical Techniques

view channel
Image: The surgical team and the Edge Multi-Port Endoscopic Surgical Robot MP1000 surgical system (Photo courtesy of Wei Zhang)

Endoscopic Surgical System Enables Remote Robot-Assisted Laparoscopic Hysterectomy

Telemedicine enables patients in remote areas to access consultations and treatments, overcoming challenges related to the uneven distribution and availability of medical resources. However, the execution... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.