We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App





Experimental Antiviral Drug Proves Dramatically Effective at Preventing and Treating COVID-19

By HospiMedica International staff writers
Posted on 10 Feb 2021
Print article
Illustration
Illustration
Using a novel in vivo research model containing human lung tissue, scientists have demonstrated that a broad spectrum, experimental drug EIDD-2801, or Molnupiravir, proved dramatically effective at preventing and treating SARS-CoV-2 infection in human tissue in the lab.

Molnupiravir, an antiviral originally designed to fight the flu, is being developed as a treatment for COVID-19 by Ridgeback Biotherapeutics (Miami, FL, USA) in collaboration with Merck (Kenilworth, NJ, USA). Scientists at the University of North Carolina School of Medicine (Chapel Hill, NC, USA) tested how the orally administered experimental drug halts SARS-CoV-2 replication and prevents infection of human cells in a new in vivo model containing human lung tissue. They found that the drug was extremely effective at preventing and treating SARS-CoV-2 infection. Phase 2 and 3 clinical trials are ongoing to evaluate EIDD-2801 safety in humans and its effect on viral shedding in COVID-19 patients.

Mouse models can be useful in studying highly pathogenic human coronaviruses including SARS-CoV-2 and compounds that might control infection. But human coronaviruses do not replicate in mice unless researchers alter the virus, genetically modify the mice, or introduce the individual human receptor genes into mice so the virus can infect cells. Such mouse models have added to the scientific community’s understanding of coronavirus infection and disease progression, but none of these models possess the diverse human cells found in human lungs where viral infection can cause severe disease. The scientists created a solution to this problem – a line of mice with human lung tissue that includes all the primary human cells infected when individuals fall ill with COVID-19.

Immune-deficient mice implanted with human lung tissue (LoM) allowed for replication of SARS-CoV-2, which resulted in infection that recapitulates several features of early diffuse lung damage seen in COVID-19 patients. In addition, acute SARS-CoV-2 infection induced a robust and sustained Type I interferon and inflammatory cytokine/chemokine response. To evaluate the therapeutic efficacy of EIDD-2801 for COVID-19, the researchers administered EIDD-2801 to LoM starting 24 hours or 48 hours post SARS-CoV-2 exposure and every 12 hours thereafter.

“We found that EIDD-2801 had a remarkable effect on virus replication after only two days of treatment - a dramatic, more than 25,000-fold reduction in the number of infectious particles in human lung tissue when treatment was initiated 24 hours post-exposure,” said senior author J. Victor Garcia, PhD, professor of medicine and director of the International Center for the Advancement of Translational Science. “Virus titers were significantly reduced by 96% when treatment was started 48 hours post-exposure.”

Next, the researchers tested the ability of EIDD-2801 to prevent SARS-CoV-2 infection by administering the drug 12 hours prior to SARS-CoV-2 exposure and every 12 hours thereafter.

“Remarkably, we found that EIDD-2801 pre-exposure prophylaxis significantly inhibited SARS-CoV-2 replication - reducing virus titers in the human lung tissues of LoM by over 100,000 fold in two independent experiments,” said co-first author Angela Wahl, PhD, assistant professor of medicine and assistant director of the International Center for the Advancement of Translational Science.

“Previously, we demonstrated that EIDD-2801 is also efficacious against SARS-CoV and MERS-CoV infection in vivo and in primary human airway epithelial cultures,” said Ralph Baric, PhD, the William Kenan Distinguished Professor of Epidemiology at the UNC Gillings School of Global Public Health and the UNC School of Medicine. “Overall, these results indicate that EIDD-2801 may not only be efficacious in treating and preventing COVID-19, it could also prove to be highly effective against future coronavirus outbreaks as well.”


Related Links:
Ridgeback Biotherapeutics
Merck
UNC School of Medicine


Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
New
Standing Sling
Sara Flex
New
Hospital Bed
Alphalite

Print article

Channels

Surgical Techniques

view channel
Image: Schematic diagram of intra-articular pressure detection using a sensory system in a sheep model (Photo courtesy of Science China Press)

Novel Sensory System Enables Real-Time Intra-Articular Pressure Monitoring

Knee replacement surgery is a widely performed procedure to relieve knee pain and restore joint function, with over one million surgeries conducted annually. However, 10%-20% of patients remain dissatisfied... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.