Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App





New Machine Learning Algorithm Could Assist Pulmonary Doctors in Optimizing Ventilator Treatment for COVID-19

By HospiMedica International staff writers
Posted on 04 Jan 2021
Scientists and engineers have used computer modeling and experimental fluid mechanics to understand how tiny aerosol particles, when pulsed into the lung, may break up COVID-19-related mucus and improve gas exchange.

Cross-disciplinary scientists and engineers at Los Alamos National Laboratory (Los Alamos, NM, USA) are working to learn how Intrapulmonary Percussive Ventilation (IPV) helps clear mucus from blocking the airways of the human lung, a common reaction to the SARS-CoV-2 virus. Researchers, using some of the same modeling and experimental techniques from the Laboratory’s nuclear weapons mission, are working to discover the underlying science and engineering principles behind this process and have developed a preliminary machine learning algorithm that could someday assist pulmonary doctors in treating COVID-19 patients with IPV. IPV is used alongside traditional ventilation to deliver rapid pulses of aerosol, depositing medication and potentially opening up clogged airway passages in the lung. Researchers are merging numerical and experimental approaches to develop a predictive model of lung behavior under these conditions.

The lung is a highly complex system, so the Laboratory is using acoustic measurements, computational fluid dynamics models, structural-fluid interaction models, and optical techniques to model the breathing process and observe aerosol flow and mucus breakup. This is especially challenging because of the complex geometries in lung structure, multifaceted boundary conditions in the deep lung, and non-linear behavior of viscous fluids in the lung. The study requires analysis of how the lung responds to the kinetic energy of variable pressures, rotational flows, and sheer stresses on the lung walls.

To inform the mathematical models, the research team designed, built and tested several experimental devices, including a 3D printed "gas distribution manifold" that mimics the structures of the lung's trachea and bronchial branches. They used sensors to measure pressure, velocity, temperature and humidity, along with a gas analyzer to measure pressure and volume, optical sensors to detect aerosol density and spectrometers to look at particle size distribution. They also used lung tissue harvested from sheep carcasses and dyed aerosol to track the deposition of IPV aerosols during a ventilation-assisted process. The preliminary machine learning algorithm ties all the variables together, with the hope of eventually creating a rapid, patient-specific tool for estimating the proper ventilator and IPV settings for a particular patient before ventilation is begun, responding to and optimizing the treatment for each patient.

"People who have contracted the SARS-Cov2 virus may develop respiratory distress in which their lungs fill with mucus as a response to the viral infection. As the lungs fill with mucus, the person may ultimately require mechanical ventilation," said John Bernardin, principal investigator for the project in the Laboratory's Mechanical and Thermal Engineering group. "This project is investigating how IPV pulsations of fine aerosols may help clear mucus from the patient's lungs, help them breathe while on a ventilator, and ultimately help them recover from the disease."

"We have learned that humidity has a strong effect on aerosol concentration," explained Bernardin. "Dilution effects in the lung are less apparent with higher humidity, but more pronounced with increased volume flow rate, and aerosol penetration is much better during inhalation. We also discovered new mechanical dynamics and fluid mechanics (patent pending) that may further enhance the aerosol transport and mucus removal.”

"The numerical modeling and experimentation tools required to study IPV are some of the same ones we use to design and test weapon systems, global security devices, and energy harvesting hardware," added Bernardin. "Through the development of new tools to fight COVID-19, we demonstrate firsthand how our national laboratory's people and equipment can quickly adapt and overcome to solve a complex problem that threatens our very way of life."

Related Links:
Los Alamos National Laboratory


Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
New
Pediatric Phlebotomy Chair
2665M2 Extra Wide Pediatric Phlebotomy Chair
New
Coronary Stent System
Ultimaster Sirolimus
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get complete access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: The Trilogy Valve with locator technology is the only TAVI system approved for aortic regurgitation (Photo courtesy of JenaValve)

New Transcatheter Valve Found Safe and Effective for Treating Aortic Regurgitation

Aortic regurgitation is a condition in which the aortic valve does not close properly, allowing blood to flow backward into the left ventricle. This results in decreased blood flow from the heart to the... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.