We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App





Discovery of Helpful and Harmful COVID-19-Related Genes to Aid Development of New Therapies

By HospiMedica International staff writers
Posted on 28 Oct 2020
Print article
Image: SARS-CoV-2 viral particles (blue) in a clinical isolate. (Photo courtesy of CDC)
Image: SARS-CoV-2 viral particles (blue) in a clinical isolate. (Photo courtesy of CDC)
Additional COVID-19 related genes - both helpful and harmful - revealed in a massive screen will help guide efforts to develop new therapies.

Researchers at Yale University (New Haven, CT, USA) and the Broad Institute of MIT and Harvard (Cambridge, MA, USA) screened hundred of millions of cells exposed to the SARS-CoV-2 and MERS viruses, and have identified dozens of genes that enable the viruses to replicate in cells, as well as those that seem to slam the door on the virus. The pro-viral and anti-viral roles of these genes will help guide scientists in development of new therapies to combat COVID-19, according to the researchers.

Scientists have identified how SARS-CoV-2 attaches to and invades cells, but less is known about why some cells are more susceptible to infection. Understanding the genetics behind host cells’ susceptibility to infection may help explain why some people exposed to the virus experience few or no symptoms while others become extremely ill or die. Researchers performed a genome-wide screen of a line of green monkey cells, which are more sensitive to SARS-CoV-2 infection than commonly used human cell lines. The screens for the first time allowed researchers to simultaneously track interactions of virus and cells. The screens confirmed earlier findings that the ACE2 gene, which encodes a receptor on the cell surface, promotes infection by SARS-CoV-2.

However, the screens also identified two previously unknown pro-viral factors, as well as a third that seems to assist in preventing infection. They found that members of the SWI/SNF protein complex, which turns genes on and off, and HMGB1, which has a myriad of functions including regulation of inflammation, were linked to increased cell death after infection. The researchers then introduced small molecule drugs that inhibit function of two of the identified gene products, and found they could increase survival of cells after infection in a dish. By contrast, the histone H3 complex, which helps regulate expression of genes within the cell nucleus, seemed to provide a protective effect, inhibiting the ability of SARS-CoV-2 to infect and kill cells.

“It is very important to understand wide variation of responses to COVID-19, for instance why advanced age makes it much more likely that people will die,” said Yale’s Craig Wilen, assistant professor in laboratory medicine and immunobiology. “We have identified both proviral and antiviral genes that may help us predict who is likely to get severely ill and what kind of drugs would be helpful or detrimental in treating patients.”

Related Links:
Yale University
Broad Institute of MIT and Harvard


Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
New
Shoulder Positioner
HE-JB2
New
Blanket Warming Cabinet
EC250

Print article

Channels

Critical Care

view channel
Image: An in-situ curing strategy to develop a stretchable, semi-transparent, and durable GPE-TENG (Photo courtesy of Pandey et al. (2024), Chemical Engineering Journal; DOI: 10.1016/j.cej.2024.156650)

Gel-Based Stretchable Triboelectric Nanogenerators to Revolutionize Wearable Technology

Wearable technology, ranging from fitness trackers and smartwatches to medical sensors worn on the body, is revolutionizing our interaction with technology. As these devices gain in popularity, triboelectric... Read more

Surgical Techniques

view channel
Image: The first-ever surgery performed utilizing the MARS platform and Intuitive Da Vinci SP single-port robot (Photo courtesy of Levita Magnetics)

Revolutionary Robotic Surgery Combines Dual-System Technologies for Groundbreaking Prostate Procedure

In a pioneering advancement for robotic-assisted surgery, surgeons at UT Southwestern Medical Center (Dallas, TX, USA) have successfully performed the first-ever surgery utilizing two distinct systems... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.