Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App





Yale Researchers Use Single-Cell Analysis and Machine Learning to Identify Major COVID-19 Target

By HospiMedica International staff writers
Posted on 30 May 2020
Scientists at the Yale School of Medicine (New Haven, CT, USA) are using single-cell RNA sequencing of infected human bronchial epithelial cells (HBECs) to learn how SARS-CoV-2 infects and alters healthy cells.

In the study, the scientists identified ciliated cells as the major target of SARS-CoV-2 infection. The bronchial epithelium acts as a protective barrier against allergens and pathogens. Cilia removes mucus and other particles from the respiratory tract. Their findings offer insight into how the virus causes disease. The scientists infected HBECs in an air-liquid interface with SARS-CoV-2. Over a period of three days, they used single-cell RNA sequencing to identify signatures of infection dynamics such as the number of infected cells across cell types, and whether SARS-CoV-2 activated an immune response in infected cells.

The scientists utilized advanced algorithms to develop working hypotheses and used electron microscopy to learn about the structural basis of the virus and target cells. These observations provide insights about host-virus interaction to measure SARS-CoV-2 cell tropism, or the ability of the virus to infect different cell types, as identified by the algorithms. After three days, thousands of cultured cells became infected. The scientists analyzed data from the infected cells along with neighboring bystander cells. They observed ciliated cells were 83% of the infected cells. These cells were the first and primary source of infection throughout the study. The virus also targeted other epithelial cell types including basal and club cells. The goblet, neuroendocrine, tuft cells, and ionocytes were less likely to become infected.

The gene signatures revealed an innate immune response associated with a protein called Interleukin 6 (IL-6). The analysis also showed a shift in the polyadenylated viral transcripts. Lastly, the (uninfected) bystander cells also showed an immune response, likely due to signals from the infected cells. Pulling from tens of thousands of genes, the algorithms locate the genetic differences between infected and non-infected cells. In the next phase of this study, the scientists will examine the severity of SARS-CoV-2 compared to other types of coronaviruses, and conduct tests in animal models.

“Machine learning allows us to generate hypotheses. It’s a different way of doing science. We go in with as few hypotheses as possible. Measure everything we can measure, and the algorithms present the hypothesis to us,” said senior author David van Dijk, PhD, an assistant professor of medicine in the Section of Cardiovascular Medicine and Computer Science.

Related Links:
Yale School of Medicine


Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
New
Transportation Stretcher
ES709
New
Auditory Evoked Potential Device
Bio-logic NavPRO ONE
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get complete access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: The stretchy hydrogel and a vial of liquid polymer (Photo courtesy of WPI)

New Class of Bioadhesives to Connect Human Tissues to Long-Term Medical Implants

Medical devices and human tissues differ significantly in their composition. While medical devices are primarily constructed from hard materials like metal and plastic, human tissue is soft and moist.... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.