We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Events

27 Jan 2025 - 30 Jan 2025
15 Feb 2025 - 17 Feb 2025

Machine-Learning Tool to Improve Clinical Outcomes for Stroke Patients with Large Blood Vessel Blockages

By HospiMedica International staff writers
Posted on 11 Oct 2024
Print article
Image: The deep-learning model will predict clinical outcomes in stroke patients treated with clot-busting medications and/or endovascular therapy treatment (Photo courtesy of 123RF)
Image: The deep-learning model will predict clinical outcomes in stroke patients treated with clot-busting medications and/or endovascular therapy treatment (Photo courtesy of 123RF)

An ischemic stroke occurs when a blood clot or other particle blocks a blood vessel in the brain. In about one-third of cases, clot-dissolving medications can successfully break up the blockage. However, when the clot is large, medication alone often proves insufficient, leading doctors to consider endovascular therapy. This procedure involves guiding a catheter through an artery in the groin or wrist into the brain to remove the clot. Recent studies suggest that even a day or more after a stroke, and even in cases of extensive damage, patients can still experience positive outcomes from endovascular therapy. Conversely, some patients who are predicted to benefit from this procedure based on specific metrics do not see improvement. While doctors can successfully restore blood flow by unblocking the artery in over 90% of cases, more than 50% of these patients still suffer from moderate to severe disability. A new study aims to bridge the gap between successful vessel reopening via endovascular surgery and reduced post-stroke disability.

The five-year study, to be conducted by researchers at University of Texas Health Science Center at Houston (Houston, TX, USA), will focus on developing a machine-learning tool to predict which stroke patients with large vessel blockages are most likely to benefit from endovascular therapy. The team will create a database of imaging and clinical outcomes from patients at three U.S. hospitals who have undergone successful reperfusion, the process of reopening the blocked vessel. This database will help researchers identify clinical and imaging predictors of brain damage following reperfusion.

The research team will develop a machine-learning model capable of predicting brain tissue viability and clinical outcomes using data collected both before endovascular therapy and after reperfusion. This deep-learning model will incorporate imaging data, patient clinical history, and stroke severity measures to help identify patients for whom endovascular therapy alone may not be enough to produce favorable outcomes. By analyzing changes between pre- and post-treatment imaging and clinical variables, the model will also aim to predict outcomes in patients treated with clot-busting medications and/or endovascular therapy.

“We are letting an algorithm learn the visual features that are predictive to doing well, or not doing well,” said lead investigator Luca Giancardo, PhD, associate professor at UTHealth Houston. “It’s not that machine learning or AI see things that are invisible. They see things that are there. But finding correlations between multiple modalities, with longitudinal data, it’s hard because they can be very subtle. The model is hopefully going to see things that we don’t see, that we don’t think to see, that we wouldn’t even think to analyze in certain ways. So, this model will hopefully be able to outperform what we can do with our eyes.”

Related Links:
UTHealth Houston

Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
Mini C-arm Imaging System
Fluoroscan InSight FD
New
Transducer Covers
Surgi Intraoperative Covers

Print article

Channels

Surgical Techniques

view channel
Image: The surgical team and the Edge Multi-Port Endoscopic Surgical Robot MP1000 surgical system (Photo courtesy of Wei Zhang)

Endoscopic Surgical System Enables Remote Robot-Assisted Laparoscopic Hysterectomy

Telemedicine enables patients in remote areas to access consultations and treatments, overcoming challenges related to the uneven distribution and availability of medical resources. However, the execution... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.