We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Events

27 Jan 2025 - 30 Jan 2025
15 Feb 2025 - 17 Feb 2025

New Machine Learning Method Better Predicts Spine Surgery Outcomes

By HospiMedica International staff writers
Posted on 05 Jun 2024
Print article
Image: The new method can more accurately gauge how patients recover from spine surgery (Photo courtesy of 123RF)
Image: The new method can more accurately gauge how patients recover from spine surgery (Photo courtesy of 123RF)

The outcomes of lower back surgery and various orthopedic operations can vary significantly, influenced not only by the patient's structural disease but also by differing physical and mental health characteristics. Surgical recovery is impacted by the patient’s preoperative physical and mental health. Additionally, some individuals may experience heightened anxiety or physiological issues that exacerbate pain and impede recovery. If doctors can identify potential challenges a patient may face, they can better customize treatment plans. Researchers have been utilizing mobile health data from Fitbit devices to monitor and measure recovery, comparing activity levels over time. Now, these researchers, using Fitbit data to predict surgical outcomes, have a new method to more accurately assess how patients may recover from spine surgery.

Researchers at Washington University in St. Louis (St. Louis, MO, USA) employed machine-learning techniques to develop a method that can more precisely forecast recovery from lumbar spine surgery. Their earlier research demonstrated that combining patient-reported data with objective wearable measurements enhances predictions of early recovery compared to traditional patient assessments. They showed that Fitbit data could be correlated with various surveys evaluating a person’s social and emotional state. This data was collected through “ecological momentary assessments” (EMAs), using smartphones to prompt patients frequently throughout the day to assess mood, pain levels, and behavior.

In the most recent study, the researchers combined all these factors to develop a new machine-learning technique called “Multi-Modal Multi-Task Learning” to effectively integrate different types of data to predict multiple recovery outcomes. This approach allows the AI to understand the relationships among different outcomes while recognizing their distinct differences from the multimodal data. The method utilizes shared information on interrelated tasks of predicting different outcomes and leverages this shared information to improve the accuracy of predictions. The final result is a predicted change in each patient’s post-operative pain interference and physical function score. The study is ongoing, with researchers continuing to refine their models to perform more detailed assessments, predict outcomes, and, most importantly, identify modifiable factors to enhance long-term outcomes.

“We combine wearables, EMA and clinical records to capture a broad range of information about the patients, from physical activities to subjective reports of pain and mental health, and to clinical characteristics,” said WUSTL Professor Chenyang Lu.

“By predicting the outcomes before the surgery, we can help establish some expectations and help with early interventions and identify high risk factors,” added Ziqi Xu, a PhD student in Lu’s lab.

Related Links:
Washington University in St. Louis 

Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
Cannulating Sphincterotome
TRUEtome
New
Pneumatic Stool
Avante 5-Leg Pneumatic Stool

Print article

Channels

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.