We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




Novel Biomaterial Combined with Unique Microsurgical Approach Speeds up Soft Tissue Recovery

By HospiMedica International staff writers
Posted on 11 Mar 2024

Soft tissue recovery and regrowth largely depend on the formation of new blood vessels to deliver oxygen and nutrients. More...

However, this process, known as vascularization, can be slow, affecting recovery and regrowth after severe injuries or illnesses like cancer. Clinicians typically use bulk hydrogel scaffolds — crosslinked polymer networks — to aid blood vessel formation during reconstructive surgery, but these scaffolds have limitations. They can cause delays leading to complications like seroma (fluid buildup post-surgery), infection, and reconstructive failure. To speed up the formation and patterning of new blood vessels, researchers have combined a novel biomaterial with a microsurgical approach used in reconstructive surgery, allowing for improved soft tissue recovery.

The research team at Penn State (University Park, PA, USA) showed that their technique could accelerate the formation of guided networks of blood vessels through a proof-of-concept seven-day experiment. The researchers had previously engineered granular hydrogel scaffolds (GHS), which are unique biomaterials made from packed gel particles or microgels. Unlike bulk hydrogels, which are commonly used in surgery as a base for revascularization of tissues, GHS enables the blood vessels to regrow in a set pattern. This is in contrast to bulk hydrogels, where the blood vessels adopt a random appearance as they regrow in bulk hydrogels. According to the researchers, their approach could enable tissue repair and regeneration across the body.

Their surgical method employs micropuncture, a technique involving the perforation of an existing blood vessel with a fine needle. This assists cells in rapidly migrating to the surrounding tissue, promoting angiogenic outgrowth – the extension of new blood vessels from existing ones. Micropuncture also minimizes the risks of blood clotting and significant hemorrhaging, common in conventional vascular surgery. After creating the micropuncture, GHS is applied to the wound area, providing a scaffold for blood vessel formation. The distinct void architecture of GHS provides the parameters required to guide the blood vessels as they grow. The effectiveness of the GHS/microsurgery technique was tested on the hind limbs of rats and revealed the formation of blood vessels around the GHS within seven days, without any adverse effects. Additionally, by using GHS of different microgel sizes, researchers could control the distances between capillaries in the resulting vascular pattern.

“Our approach may open opportunities to redefine the tissue vascularization landscape, with widespread applicability in many parts of the human body and for various diseases, including cardiovascular-related ones,” said corresponding author Amir Sheikhi. “We strongly believe that this novel platform of GHS and microsurgery for reconstructive surgery and regenerative medicine will help patients grow new blood vessels rapidly.”

Related Links:
Penn State


Gold Member
12-Channel ECG
CM1200B
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
New
Pocket Fetal Doppler
CONTEC10C/CL
New
Pedicle Screw Platform
CREO DLX Stabilization System
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Critical Care

view channel
Image: the deep tissue in vivo sound printing (DISP) platform, which combines ultrasound with low-temperature–sensitive liposomes loaded with crosslinking agents (Photo courtesy of Elham Davoodi and Wei Gao/Caltech)

New Ultrasound-Guided 3D Printing Technique to Help Fabricate Medical Implants

3D bioprinting technologies hold considerable promise for advancing modern medicine by enabling the production of customized implants, intricate medical devices, and engineered tissues designed to meet... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.