We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




3D-Printable Tissue Adhesive with Blood-Repelling Feature to Revolutionize Surgical Wound Closure

By HospiMedica International staff writers
Posted on 27 Feb 2024

Tissue adhesives offer a modern alternative to traditional wound closure methods such as sutures and staples. More...

They come with benefits including reduced damage to tissues, quicker application, and potentially less scarring. However, the current adhesives have their drawbacks, like being time-consuming to apply, requiring a certain level of skill, and causing discomfort to patients. These adhesives may not be as effective on irregularly shaped or moving tissues, and their application can prolong surgical times. Furthermore, they can damage tissues, and the materials may not always integrate well with the body. Now, the development of 3D printable tissue adhesives has introduced a new dimension to wound closure and tissue repair.

Researchers from MIT (Cambridge, MA, USA) have developed a groundbreaking 3D-printable tissue adhesive that demonstrates superior tissue adhesion, quickly seals wounds in various surgical conditions, and features an innovative blood-repelling feature. The adhesive is made of a special ink that combines poly(acrylic acid) and polyurethane. This composition is key to its strong adhesion, with specific chemical groups forming a tight bond with biological tissues. The researchers enhanced the adhesive by adding a hydrophobic matrix, which repels blood and acts as a barrier against bodily fluids, maintaining the adhesive's effectiveness even in bleeding tissues. Most tissue adhesives struggle in such conditions, making it hard to stop bleeding.

Moreover, the addition of a hydrophobic protective matrix in the adhesive further boosts its functionality, providing a shield against bodily fluids and preserving its integrity in challenging bleeding scenarios. In tests, this 3D printable tissue adhesive outperformed existing commercial adhesives in adhering to tissues. This blood-repellent feature makes the 3D printable tissue adhesive a game-changer in the field of biomedical materials. It overcomes the limitations of existing adhesives in bleeding scenarios and could be used in everything from closing wounds to creating bio-integrated devices. The adhesive's capabilities suggest it could revolutionize not just wound closure but also pave the way for a range of tissue-interacting devices. Going forward, the researchers aim to focus on developing devices that interface with soft tissues, using this adhesive as a key component.

"Leveraging the 3D printability of our material opens up exciting possibilities for designing patches with tissue-specific properties, paving the way for more personalized tissue-repair solutions," said Sarah Wu, a Ph.D. candidate in the Department of Mechanical Engineering at MIT.

Related Links:
MIT


Gold Member
12-Channel ECG
CM1200B
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
New
Portable Digital Floor Scale
DR400C
New
Infusion System
SIGMA Spectrum
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Critical Care

view channel
Image: the deep tissue in vivo sound printing (DISP) platform, which combines ultrasound with low-temperature–sensitive liposomes loaded with crosslinking agents (Photo courtesy of Elham Davoodi and Wei Gao/Caltech)

New Ultrasound-Guided 3D Printing Technique to Help Fabricate Medical Implants

3D bioprinting technologies hold considerable promise for advancing modern medicine by enabling the production of customized implants, intricate medical devices, and engineered tissues designed to meet... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.