We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




Groundbreaking Technology Paves Way for Permanent Implantable Medical Devices

By HospiMedica International staff writers
Posted on 04 Jan 2024

Innovations in medical technology through the blending of science and medicine have significantly enhanced patient care. More...

Notably, the advent of implantable electronic devices, such as those used in the heart or brain, marks a major advancement, offering real-time monitoring and regulation of physiological signals. These developments present groundbreaking solutions for complex conditions like Parkinson’s disease. However, the durability of these devices remains a challenge. Typically, patients with implanted devices must undergo frequent surgeries to replace batteries, a process fraught with risks and burdens, both financial and physical. Current research is delving into implantable medical devices that function wirelessly, but the search for a safe and efficient energy source and compatible materials continues. Titanium (Ti) is commonly used for its biocompatibility and strength, but its inability to transmit radio waves requires an additional antenna for wireless power, increasing the device's size and discomfort for the patient.

In a groundbreaking development, a research team from Pohang University of Science and Technology (POSTECH, Gyeongbuk, Korea) has engineered electrostatic materials sensitive to even faint ultrasound signals, paving the way for permanently implantable electronic devices in biomedicine. The team chose ultrasound over radio waves due to its established safety record in medical diagnostics and treatments. They developed an electrostatic material that responds to weak ultrasound by combining high dielectric polymers (P(VDF-TrFE)) with calcium copper titanate (CCTO, CaCu3Ti4O12), a ceramic with a high dielectric constant. This material produces static electricity through interlayer friction, generating efficient electrical energy with exceptionally low output impedance, ensuring efficient electricity transmission.

The research team employed this innovative technology to develop an implantable neurological stimulator powered by ultrasound-based energy transmission, eliminating the need for batteries. This was substantiated through rigorous experimental validation. In trials using animal models, the device functioned at standard imaging ultrasound levels (500 mW/cm2) that place minimal strain on the human body. Additionally, it successfully alleviated symptoms associated with overactive bladder disorders by stimulating nerves, showcasing its potential to transform patient care with its cutting-edge, battery-free design.

“We have addressed the challenges in the field of implantable medical devices using ultrasound-based energy transmission technology that is harmless to the human body,” said Professor Sung-Min Park from POSTECH. “This research serves as a case of introducing advanced material technology into medical devices, and we anticipate that it will promote the emergence of a next-generation medical industry, including the treatment of intractable diseases using implantable devices.”

Related Links:
POSTECH


Gold Member
12-Channel ECG
CM1200B
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
New
Anesthesia Cart
UTGSU-333369-DKB
New
Hospital Stretcher
Millennium 5
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Critical Care

view channel
Image: the deep tissue in vivo sound printing (DISP) platform, which combines ultrasound with low-temperature–sensitive liposomes loaded with crosslinking agents (Photo courtesy of Elham Davoodi and Wei Gao/Caltech)

New Ultrasound-Guided 3D Printing Technique to Help Fabricate Medical Implants

3D bioprinting technologies hold considerable promise for advancing modern medicine by enabling the production of customized implants, intricate medical devices, and engineered tissues designed to meet... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.