We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Events

27 Jan 2025 - 30 Jan 2025
15 Feb 2025 - 17 Feb 2025

Precision Surgery System for Early-Stage Lung Cancer Provide Surgeons with Real-Time GPS Guidance

By HospiMedica International staff writers
Posted on 18 Sep 2023
Print article
Image: The NaviSci System is designed to provide GPS navigation for precise margin control (Photo courtesy of Navigation Sciences)
Image: The NaviSci System is designed to provide GPS navigation for precise margin control (Photo courtesy of Navigation Sciences)

Lung cancer ranks high among global causes of death. Fortunately, more cases—especially of the most common type, non-small cell lung cancer—are being detected at early stages like Stage 1 and Stage 2. At these stages, surgical intervention can yield promising long-term results. Now, a new system designed for use in the precision surgical treatment of early-stage lung cancer provides surgeons with real-time ‘GPS’ guidance during minimally invasive surgery. Designed to address the growing need to locate and remove lung and other soft tissue cancers, the system determines real-time margin measurement, reduces local recurrence risk, and minimizes removal of lung tissue in order to preserve lung function.

Navigation Sciences (Brookline, MA, USA) is developing the NaviSci System for use in the precision surgical treatment of early-stage lung cancer. The system offers surgeons a kind of 'GPS' to pinpoint the exact location of both the tumor and adjacent tissue during surgery, and then suggest where to excise the tumor. The system is the first to measure surgical margins in real-time, thereby greatly improving the precision of tissue removal. The NaviSci System includes an active fiducial marker known as a J-Bar, which is positioned next to the tumor. This marker helps to localize the tumor's position and map out the shortest access route from the lung surface to the cancerous nodule.

The system also comes with a specialized surgical cutting tool that has its own position sensor, along with dedicated software that syncs the sensors on both the J-Bar and the cutting tool. This gives surgeons both visual and numerical data to determine tumor margins in real-time, allowing for more accurate removal of the cancer while preserving surrounding healthy lung tissue. Additionally, Navigation Sciences is also working on the NaviSci EndoMarker, a bronchoscope-based marker designed to simplify the pre-surgery process. The system positions the J-Bar marker next to the tumor through the endoscope's working channel, using navigational and diagnostic CT images for guidance. The NaviSci System holds huge potential due to the rising cases of early-stage lung cancer and the increasing adoption of minimally invasive surgical methods that have demonstrated effectiveness similar to traditional surgery types like lobectomy.

Related Links:
Navigation Sciences 

Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
Computed Tomography System
Aquilion ONE / INSIGHT Edition
New
Blanket Warming Cabinet
EC250

Print article

Channels

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.