We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




Breakthrough Brain Implant Allows People with Spinal Cord Injuries to Move Their Limbs

By HospiMedica International staff writers
Posted on 26 Jul 2023

The majority of patients with spinal cord injuries struggle to recover due to the physical and mental challenges of repeatedly performing motor tasks, such as reaching for an object or picking up a cup. More...

Now, a breakthrough brain implant designed to boost mobility after spinal cord injuries could enable such people to move their limbs more easily and with less effort.

Scientists at a state-of-the-art lab at École Polytechnique de Montréal (Montreal, Canada) are exploring the potential of enhancing the brain areas governing movement by using an implanted neuromodulation device. This device, which operates similarly to those used for reducing Parkinson's disease-related tremors, can be compared to a pacemaker. Like a pacemaker is discreetly implanted to regulate a normal heart rhythm, the neuromodulation device is implanted in the brain to augment motor drive and facilitate stronger movements. It delivers precise electrical pulses to brain regions responsible for mobility and has already demonstrated promising results in improving leg movement in rats.

Unlike other spinal cord stimulation techniques that aim to revive activation in injured regions, this research focuses on maximizing any functions remaining intact in the spinal cord. The scientists are specifically focusing on enhancing hand function by studying the impact of electrical stimulation on the behavior of rats with spinal cord injuries. They monitor the rats' performance of a series of motor tasks, record their movements, and generate intricate 3D models that are then scrutinized through specialized motion tracking software.

Each joint of the arm and hand is recorded and reconstructed, enabling researchers to accurately determine the requirements to offset motor deficits, and then monitor the differences in the rats' performance, both with and without stimulation. For instance, a rat initially struggling to reach a pellet of food could eventually extend its reach following neuromodulation. Instead of trying to heal the injury directly, the researchers are developing a unique method to supplement the rehabilitation process that will make it much more likely for someone to recover their mobility. Depending on the success of the project, the subsequent phase will be human clinical trials, which could potentially be initiated within a few years, provided the animal trial results are robust.

Related Links:
École Polytechnique de Montréal 


Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
New
Thoracolumbar & Sacropelvic System
Ennovate TLSP
New
Pressure Transducer
TruWave
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Critical Care

view channel
Image: the deep tissue in vivo sound printing (DISP) platform, which combines ultrasound with low-temperature–sensitive liposomes loaded with crosslinking agents (Photo courtesy of Elham Davoodi and Wei Gao/Caltech)

New Ultrasound-Guided 3D Printing Technique to Help Fabricate Medical Implants

3D bioprinting technologies hold considerable promise for advancing modern medicine by enabling the production of customized implants, intricate medical devices, and engineered tissues designed to meet... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.