We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Events

27 Jan 2025 - 30 Jan 2025
15 Feb 2025 - 17 Feb 2025

Tiny Ultra-Flexible Endovascular Probe Records Deep-Brain Activity without Cranial Surgery

By HospiMedica International staff writers
Posted on 25 Jul 2023
Print article
Image: MEV probe selectively implanted into curved branch for neural recording across blood vessel wall (Photo courtesy of Stanford University)
Image: MEV probe selectively implanted into curved branch for neural recording across blood vessel wall (Photo courtesy of Stanford University)

Brain-Machine Interfaces (BMIs) facilitate direct electrical communication between the brain and external electronic systems, allowing brain activity to directly control devices such as prosthetics or control nerve or muscle function. This is particularly helpful for those with paralysis or neurological disorders in regaining function. However, traditional BMIs are often restricted to assessing neural activity on the brain's surface. Monitoring single-neuron activity from deep brain areas usually requires invasive intracranial surgeries to embed probes, potentially leading to the risk of infection, inflammation, and damage to brain tissues. An innovative alternative involves utilizing the brain's vascular network to implant bio-probes into deep-brain regions. Researchers have now devised an ultra-small, ultra-flexible electronic neural implant that can be delivered via blood vessels and is capable of recording single-neuron activity from deep within rat brains.

Researchers at Stanford University (Stanford, CA, USA) have designed ultra-flexible micro-endovascular (MEV) probes that can be accurately delivered to deep-brain areas through the blood vessels. The researchers built a minute, flexible, mesh-like electronic recording device that can be mounted onto a flexible microcatheter and implanted into sub-100-micron scale blood vessels in the brain's inner areas. Once inserted, the device expands like a stent to record neuronal signals across the vascular wall without causing damage to the brain or its blood vessels.

To assess the potential of the MEV probe in vivo, the researchers implanted the injectable probe into the vascular system of rat brains. The MEV probe demonstrated the capability to measure local field potentials and single-neuron activity in the cortex and olfactory bulb. Furthermore, the implanted devices demonstrated long-term stability, did not cause significant changes to cerebral blood flow or rat behavior, and triggered a minimal immune response. According to the researchers, future versions of these devices could even offer customized therapies to patients by recording and decoding their neural activity, followed by delivery of the appropriate modulatory stimuli.

Related Links:
Stanford University 

Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
New
LED Examination Lamp
Clarity 50 LED
New
Digital Radiographic System
OMNERA 300M

Print article

Channels

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.