We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Events

27 Jan 2025 - 30 Jan 2025
15 Feb 2025 - 17 Feb 2025

Wireless Breast Implant Delivers Tumor-Selective Light to Kill Cancer Cells

By HospiMedica International staff writers
Posted on 20 Jul 2023
Print article
Image: New tumor-selective light treatment could kill breast cancer cells with greater accuracy (Photo courtesy of NUS)
Image: New tumor-selective light treatment could kill breast cancer cells with greater accuracy (Photo courtesy of NUS)

Breast cancer is the leading cancer type affecting women, and its treatment often involves multifaceted approaches, including surgery to remove the cancerous growth and affected lymph nodes. Research indicates that patient satisfaction has improved with breast conserving therapy (BCT), a procedure involving the removal of only the tumor and a surrounding margin post-mastectomy. BCT necessitates radiotherapy following lumpectomy, a procedure to remove other abnormal and some normal tissue from the breast. As radiotherapy aims to damage the tumor, there exists a minor risk of toxicity to the skin, lung, heart, and remaining breast tissues.

In an effort to mitigate these side effects and enhance patient care, a multidisciplinary team of medical researchers, bioengineers and clinicians from the National University of Singapore (NUS, Singapore) has effectively administered tumor-specific light treatment to breast cancer cells. This treatment method, termed photodynamic therapy, has demonstrated efficacy in preclinical breast cancer models. The team sought to enhance the delivery of light to tumors embedded deeper within the skin tissue. For this, they developed a biocompatible silicone breast implant infused with nanoparticles that can be activated by near-infrared light, capable of penetrating tissues deeply.

This light can then be converted into visible light needed to activate 5-ALA, an FDA-approved, light-activated drug that triggers a tumor-killing effect without harming cells in other areas. This photodynamic therapy represents a valuable addition to the existing suite of breast cancer treatments. If used in conjunction with conventional treatments, photodynamic therapy could potentially reduce disease burden and indirectly help minimize treatment-related toxicities associated with conventional therapies.

“This discovery has the potential to significantly augment existing breast cancer therapies. Being able to selective destroy tumor cells without inducing adjacent tissue damage confers a significant advantage in cancer treatment,” said Assistant Professor Daniel Teh from NUS Medicine. “While it will probably not replace existing mainstream treatment modalities, it may still indirectly lead to a reduction in chemotherapy and/or radiation dosage by improving local tumor control.”

Related Links:
National University of Singapore

New
Gold Member
X-Ray QA Meter
T3 AD Pro
Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
New
Transcatheter Heart Valve
SAPIEN 3 Ultra
New
Hospital Data Analytics Software
OR Companion

Print article

Channels

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.