We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




Breakthrough Technology Reduces Bacteria and Deadly Infection in Medical Implants

By HospiMedica International staff writers
Posted on 28 Jun 2023

Despite considerable progress in the field of material science, high rates of surgical site infection (SSI) persist. More...

Bacterial infections, particularly those involving biofilm, pose significant complications following medical device implantation. For orthopedic patients, SSIs and periprosthetic joint injections (PJIs) can be particularly detrimental as antibiotics struggle to reach dormant bacteria in nutrient-poor environments, such as implant surfaces and bone. The key to preventing SSIs and implant-related infections lies in inhibiting biofilm formation. The rise of antibiotic-resistant bacterial strains has spurred the need for the development of indiscriminate antibacterial coatings and cutting-edge solutions. Now, a pioneering technology significantly lowers the risk of harmful bacterial biofilm formation on post-operative medical implants without resorting to antibiotics or harmful chemicals.

DeBogy Molecular Inc. (Battle Creek, MI, USA) has developed a proprietary technology that can alter molecular surface structures to electrostatically eliminate viruses, bacteria, and fungi upon contact. The DeBogy platform has proven effective across a diverse range of materials, including those used in the medical industry. Recent research has confirmed the efficiency and safety of DeBogy technology in eliminating harmful bacteria that thrive on the surface of post-operative medical implants. This groundbreaking in vivo study revealed that bacterial biofilm in animals with DeBogy-treated implants was reduced by 99.9% compared to a control group, seven days post-surgery. The infection rate in surrounding tissue in animals with DeBogy-treated implants was lowered by 99.8%. Overall, the animals implanted with DeBogy-treated devices were healthier than the control group, displaying noticeable reductions in inflammation, fibrosis, vascularization, and necrosis.

“The promise of a new antibacterial technology that can fight infection without antibiotics, chemicals, or temporary coatings is truly transformational,” said Wayne Gattinella, CEO of DeBogy Molecular. “The possibilities of the DeBogy platform to improve the quality of life and reduce the cost of care for millions of people are enormous.”

“The DeBogy technology has the potential to revolutionize the way we prevent and treat surgical site infection,” added Dr. Houssam Bouloussa, spine surgeon and cofounder, DeBogy Molecular.

Related Links:
DeBogy Molecular Inc.


Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
New
Thoracolumbar & Sacropelvic System
Ennovate TLSP
New
Hospital Stretcher
Millennium 5
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Critical Care

view channel
Image: the deep tissue in vivo sound printing (DISP) platform, which combines ultrasound with low-temperature–sensitive liposomes loaded with crosslinking agents (Photo courtesy of Elham Davoodi and Wei Gao/Caltech)

New Ultrasound-Guided 3D Printing Technique to Help Fabricate Medical Implants

3D bioprinting technologies hold considerable promise for advancing modern medicine by enabling the production of customized implants, intricate medical devices, and engineered tissues designed to meet... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.