We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




Smart Surgical Implant Coatings Warn Of Early Device Failure and Prevent Infections

By HospiMedica International staff writers
Posted on 08 May 2023

Orthopedic implant infections and device failure pose significant challenges, affecting up to 10% of patients. More...

Existing approaches to combat infections have significant drawbacks, as biofilms can form on water-repellent surfaces and antibiotic-laden coatings have toxic effects on surrounding tissue with limited efficacy against drug-resistant bacteria. Now, newly-developed "smart" coatings for orthopedic implants can provide early warnings of device failure while eliminating infection-causing bacteria.

A multidisciplinary team of researchers at the University of Illinois Urbana-Champaign (Champaign, IL, USA) has created coatings that integrate flexible sensors with a nanostructured antibacterial surface, inspired by the wings of dragonflies and cicadas. These smart coatings feature bacteria-destroying nanopillars on one side and strain-mapping flexible electronics on the other, which could help physicians monitor patient rehabilitation and address device issues before failure occurs. The team's study showed successful infection prevention in live mice and the ability to provide early warnings of implant or healing failures in sheep spine experiments.

The team developed a thin foil, patterned with nanoscale pillars resembling those on cicada and dragonfly wings, which effectively puncture and kill bacterial cells attempting to bind to the foil. Flexible electronic sensors were integrated on the back side of the foil to monitor strain, helping physicians to track patient healing, optimize rehabilitation, and identify device issues before failure occurs.

To evaluate their prototypes, the researchers implanted the foils in live mice and observed no signs of infection even when bacteria were introduced. Additionally, they applied the coatings to commercial spinal implants in sheep spines and successfully monitored strain for device failure diagnosis. The current prototypes rely on wired electronics; however, the researchers plan to develop wireless power and data communication interfaces for clinical use. They are also working on scaling up production of the bacteria-killing nanopillar-textured foil.

“This is a combination of bio-inspired nanomaterial design with flexible electronics to battle a complicated, long-term biomedical problem,” said study leader Qing Cao, a U. of I. professor of materials science and engineering. “These types of antibacterial coatings have a lot of potential applications, and since ours uses a mechanical mechanism, it has potential for places where chemicals or heavy metal ions – as are used in commercial antimicrobial coatings now – would be detrimental.”

 


Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
New
Enteral Feeding Pump
Instilar 1420
New
Critical Care Cart
Avalo
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Critical Care

view channel
Image: the deep tissue in vivo sound printing (DISP) platform, which combines ultrasound with low-temperature–sensitive liposomes loaded with crosslinking agents (Photo courtesy of Elham Davoodi and Wei Gao/Caltech)

New Ultrasound-Guided 3D Printing Technique to Help Fabricate Medical Implants

3D bioprinting technologies hold considerable promise for advancing modern medicine by enabling the production of customized implants, intricate medical devices, and engineered tissues designed to meet... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.