We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Bio-Absorbable Medical Implants Offer Better Way to Heal Bone Damage

By HospiMedica International staff writers
Posted on 10 Apr 2023
Print article
Image: Bio-absorbable medical implants can dissolve within the body, eliminating the need to remove them (Photo courtesy of Freepik)
Image: Bio-absorbable medical implants can dissolve within the body, eliminating the need to remove them (Photo courtesy of Freepik)

Traditional methods for treating children's broken bones involve inserting metal implants, which can be challenging, distressing, and even detrimental to their growing bodies. This process requires subsequent removal after the bone has healed. Now, scientists may have discovered an improved approach for repairing bone damage.

Biomedical engineers at the University of Central Florida's College of Medicine and Burnett School of Biomedical Sciences (Orlando, FL, USA) are employing bioabsorbable magnesium composites to create medical implants like screws, pins, and rods that dissolve within the body, eliminating the need for removal. While conventional titanium bone implants are effective and long-standing, their insertion may hinder bone growth and necessitate a second procedure for removal, potentially causing psychological issues. During recovery, the body's weight is transferred to the metal rather than the bone, due to the strength of titanium implants. Magnesium, on the other hand, has mechanical properties resembling bone, already exists within the body, and fosters bone formation, making it an excellent choice.

As a material, magnesium is ideal for bone health and healing since it is as robust as metal, more flexible than ceramics, and less likely to be rejected, as it is a naturally occurring compound in the body. The magnesium composite used by the engineers also contains nanoparticles that are absorbed into the tissue as the implant dissolves, helping to regenerate new bone and accelerate the healing process. As the magnesium plates and screws dissolve over three to six months following surgery, patients' bodies can safely expel the natural product. The researchers have successfully implemented these implants in rat models, representing the initial phase of obtaining approval for human trials..

“What we do is called regenerative medicine, where we build bioactive materials that can repair tissue,” said UCF biomedical engineer Dr. Mehdi Razavi. “My research is always focused on bringing together advancements in material science and medicine. This research is focused on bone tissue that has been lost due to bone fractures, tumor removal and osteoporosis.”

“If you have an implantable metal that is naturally absorbed and does not have to be removed during a second surgery, that has tremendous benefits in terms of eliminating the stress of additional surgeries on patients and containing healthcare costs,” added Nemours Children’s Health’s Dr. Zach Stinson, a pediatric orthopedic and sports medicine surgeon who also contributed to the research.

Related Links:
University of Central Florida

Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
Digital Radiography System
DigiEye 330
New
Portable X-ray Unit
AJEX140H

Print article

Channels

Critical Care

view channel
Image: Researchers have designed a magnetoplasmonic strain sensor for wearable devices (Photo courtesy of Chemical Engineering Journal, DOI: https://doi.org/10.1016/j.cej.2024.155297)

Power-Free Color-Changing Strain Sensor Enables Applications in Health Monitoring

Wearable devices and smart sensors are revolutionizing health and activity monitoring, enabling functions like heart rate tracking and body movement detection. However, conventional tools like stethoscopes... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.