We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




3D-Printed Models of Human Brain Could Improve and Personalize Neurosurgery

By HospiMedica International staff writers
Posted on 27 Mar 2023

Neurosurgeons often practice surgeries prior to the actual procedure using patient brain models, but current models lack realism in replicating blood vessels and providing accurate tactile feedback. More...

Additionally, they may not include crucial anatomical structures that affect the surgery. To improve accuracy and reduce errors during actual surgeries, personalized 3D printed replicas of patient brains could be used, as they can replicate the soft texture and structural details needed for effective pre-surgery preparation.

Scientists at the University of Florida (Gainesville, FL, USA) have developed a new 3D printing method using silicone that can create accurate models of blood vessels in the brain, providing neurosurgeons with more realistic simulations for pre-surgical preparation. While embedded 3D printing has been successful for creating various soft materials, such as hydrogels, microparticles, and living cells, printing with silicone has been challenging. Due to the high interfacial tension between oil (which liquid silicone is) and water-based support materials, 3D-printed silicone structures have been prone to deform and small-diameter features break into droplets during the printing process.

Numerous studies have been conducted to produce silicone materials that can be printed without the need for support. However, altering the properties of silicone to achieve this also affects the material's softness and stretchiness, which are significant considerations for users. To address the issue of interfacial tension, researchers from the fields of soft matter physics, mechanical engineering, and materials science have developed a support material using silicone oil. The team hypothesized that most silicone inks would share chemical similarities with their silicone support material, thereby significantly reducing interfacial tension while remaining distinct enough to be printed separately in 3D.

The team of researchers tested various support materials but determined that the most effective solution was to create a dense emulsion of silicone oil and water that resembled a crystal clear mayonnaise, made from packed microdroplets of water in a continuum of silicone oil. The researchers coined the term "additive manufacturing at ultra-low interfacial tension" (AMULIT) for this method. Using the AMULIT support material, the researchers managed to print off-the-shelf silicone at high resolution, producing features as small as 8 micrometers (approximately 0.0003 inches) in diameter. The printed structures were equally durable and stretchy as those produced through traditional molding. This breakthrough allowed the team to create precise 3D models of a patient’s brain blood vessels based on a 3D scan and a functioning heart valve model based on average human anatomy.

Related Links:
University of Florida 


Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
New
Portable Digital Floor Scale
DR400C
New
Enteral Feeding Pump
Instilar 1420
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Critical Care

view channel
Image: the deep tissue in vivo sound printing (DISP) platform, which combines ultrasound with low-temperature–sensitive liposomes loaded with crosslinking agents (Photo courtesy of Elham Davoodi and Wei Gao/Caltech)

New Ultrasound-Guided 3D Printing Technique to Help Fabricate Medical Implants

3D bioprinting technologies hold considerable promise for advancing modern medicine by enabling the production of customized implants, intricate medical devices, and engineered tissues designed to meet... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.