We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Events

27 Jan 2025 - 30 Jan 2025
15 Feb 2025 - 17 Feb 2025

New Research Could Lower Malfunction Rates for Medical Implants

By HospiMedica International staff writers
Posted on 15 Mar 2023
Print article
Image: New research finding could improve immune response control for medical implants (Photo courtesy of Pexels)
Image: New research finding could improve immune response control for medical implants (Photo courtesy of Pexels)

Medical implants can save lives or significantly improve quality of life, but they can also trigger an immune response in our bodies. When immune cells respond to these foreign objects, it can lead to the accumulation of excess tissue at the site - this is known as fibrosis or scarring. Traditionally, protein deposition has been linked to the fibrotic response to implants. Now, bioengineers at Rice University (Houston, TX, USA) have discovered that lipids on the surfaces of implants can also play a role in mediating the body's response. Some lipids may act as "peacekeepers" while others may cause conflict.

With this knowledge, scientists could develop biomaterials or coatings for implants that reduce the aggressive response from the host immune system. This would decrease the malfunction rates for numerous biomedical devices including pacemakers, coronary stents, surgical meshes, drug delivery pumps, and biosensors. The researchers believe that optimizing implant performance is particularly important for patients with chronic and life-threatening conditions like hydrocephalus, where excess cerebrospinal fluid in the brain can only be managed by placing a CSF shunt. Pediatric hydrocephalus patients face especially high rates of implant failure, which can lead to severe consequences such as brain injury, loss of vision, headaches, vomiting, and even death if not addressed promptly.

“In our research, we realized that, while proteins are important, fat molecules also play a significant role in the fibrotic process,” said Christian Schreib is a Rice graduate student and lead author on the study. “We identified two lipid profiles, fatty acids and phospholipids. Fatty acids are more likely to provoke an immune response, while phospholipids are more likely to fly under the radar and not irk the immune system.”

“Now that we understand this, we can use this knowledge to engineer materials for use in implants that are less likely to trigger an immune response. We could, say, engineer a material that pulls in phospholipids to it, so that when you implant the material, the phospholipids naturally deposit onto it and help it evade the immune system. We might also want to look at taking those fat molecules like the phospholipids and chemically functionalize them to the device surface before implantation,” added Schreib.

Related Links:
Rice University 

Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
12-Channel ECG
CM1200B
New
Computed Tomography System
Aquilion ONE / INSIGHT Edition
New
Documentation System For Blood Banks
HettInfo II

Print article

Channels

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.